

APPENDIX 8.1

Baseline Noise Measurements

Baseline Noise Measurements

Baseline noise monitoring was undertaken at 12 locations, locations N1 to N12, to establish the existing background noise levels at these locations. These locations represent the nearest residential receptors to the north, south, east and west of the proposed wind farm.

Selection of Monitoring Locations

Section 2.2.5 of the Institute of Acoustics', A Good Practice Guide to the Application of ETUS-R-97 for the Assessment at Rating of Wind Turbine Noise (2013) regarding use of proxy locations states "When choosing a location that will serve as a proxy for others, the basis for selection is that it can reasonably be claimed, from inspection and observation, to be representative of the non-surveyed locations, in line with the criteria of Section 2.5. Measurement locations outside a property's curtilage (such as an adjacent field) may be used when access to a representative property cannot be obtained, provided that such a location can be justified as being representative. No general guidance can therefore be given on the number of measurement locations as this will be site-specific." Section 2.5 of the GPG is summarised in Table 7.1.1 with the applicability of the proxy locations selected for Shancloon Wind Farm.

Table 7.1.1: IOA GPG Section 2.5 Criteria and Applicability to Shancloon Wind Farm Monitoring Locations

Requirements of Section 2.5	Shancloon Wind Farm Monitoring Locations
2.5.1 Where possible, measurements should be made in the vicinity of a dwelling in an area frequently used for rest and recreation.	This was adhered to at all locations, so far as practicable. All measurements were in the vicinity of dwellings, representative of areas used for rest and recreation.
2.5.2 Equipment should be placed at outdoor positions where noise levels are representative of typical 'low' levels likely to be experienced in the vicinity of a dwelling (or group of dwellings if the measurements are intended to be applied to more than one dwelling). The overriding consideration is that it can reasonably be claimed, from inspection and observation, that there are no other suitable noise-sensitive locations, in the vicinity of any selected location and close to a dwelling, where background noise levels would be expected to be consistently lower than the levels at the selected position.	This was adhered to at all locations.
2.5.3 Ideally the position should be one which would be exposed to noise from the wind turbines whilst being best-screened from other noise sources such as nearby roads or vegetation.	The locations were in open areas or within the curtilage of a property, set back from local roads and vegetation/forestry, so far as practicable, and in the direction of the proposed windfarm.
2.5.4 The background surveys provide the basis for setting both daytime and night-time noise limits: the measurement position must therefore reasonably represent external areas (for daytime noise) and also building façades containing windows (for night-time noise).	The locations being used to derive limits are representative of external areas and façade locations.

Requirements of Section 2.5	Shancloon Wind Farm Monitoring Locations					
2.5.5 In most locations, background noise levels will be determined by wind in trees and vegetation and noise sources external to the property such as traffic noise.	There were some local noise sources described below. Locations N3, N4, N6, N7 are on or near working farms					
The presence of local noise sources such as boiler flues, garden fountains, domestic drains, watercourses and farm equipment should be identified.						
2.5.6 Where it is not possible to exclude the influence of variable local noise sources by selection of monitoring position, it is generally possible to identify such data from inspection of noise level time histories and therefore to exclude it from the data set used to derive noise limits	Attendance at the monitoring location during installation, battery changes and equipment collection did not identify any variable noise sources. Atypical data was removed during data analysis.					
2.5.7 In all cases, microphones should be supported at a height of 1.2 – 1.5 metres above the ground and no closer than 3.5 metres to any significant reflecting surface (such as a building or fence), except the ground. The position should be within 20 metres of the dwelling unless there are particular reasons for measuring at a more distant position (such as the presence of vegetation or denial of access); if so, the reasons should be explained.	The microphones were mounted on tripods at approximate height of 1.5 m and at least 3.5 m from any significant reflecting surface other than the ground. Where possible the noise monitors were located within 20 m. When the noise monitors were located at more distant locations this was due to either the refusal of access or presence of vegetation/reflective surfaces.					
2.5.8 A resident at a selected property may request that measurements are made at a position which is considered inappropriate; perhaps because the preferred location(s) are inconvenient (it might obstruct lawn mowing, for example). In this situation the consultant should explain clearly the reasons why the measurements could be compromised; if no agreement can be reached, an alternative property or location should be sought. The assistance of the EHO may help to resolve these situations.	This was not an issue.					

Monitoring Locations

Twelve noise monitoring locations were selected for obtaining a detailed representation of the background noise levels in the area. The chosen noise monitoring locations were representative of the different noise environments in the vicinity of the proposed Shancloon Wind Farm development as well as being located at some of the closest dwellings (or their representative proxies) to the proposed wind farm development. Details of the noise monitoring locations are provided in Table 8.1.2. The position of the monitoring locations are shown in Figure A8.1.

 Table 8.1.2:
 Details on the Noise Monitoring Locations

Location ID	Easting	Northing	Description	Photograph	Representative Properties
N1	533526	756517	Located north of proposed wind farm in front garden of dwelling adjacent to local road.	Plate 8.1-1	Properties north and centre of proposed windfarm, on outskirts of Tobberoe townland.
N2	534984	756026	Lacated in roar garden	Plate 8.1-2	R210, R212
N2	33 133 1	750020	Located in rear garden of dwelling adjoining agricultural lands. North-east of proposed wind farm.	Plate 8.1-2	Small group of properties north east of proposed windfarm, along road at Cloonteen Townland.
					R226, R239, R 243, R244
N3	535647	754932	Located east of proposed wind farm, within curtilage of dwelling adjoining agricultural lands and stables.	Plate 8.1-3	Group of three properties east of proposed windfarm on Cloonaglasha Road.
			stables.		R215, R253, R263
N4	534240	753750	Located southeast of proposed windfarm in agricultural field approximately 20m from farm dwelling. Positioned away from trees and agricultural	Plate 8.1-4	Group of properties at Dalgan Park, Beagh More Townland south east of proposed windfarm. R198,R199, R201, R203,
			machinery/sheds.		R204, R205, R214, R219
N5	532749	753685	Located south of proposed windfarm, in side garden of dwelling set back approximately 10m from local road.	Plate 8.1-5	Group of properties south of proposed windfarm, along Demense Cottages, Beagh More Townland
					R1, R66, R187, R193, R195, R200, R211,R213, R223, R224, R240, R250, R270, R282, R287
N6	532083	753732	Positioned in agricultural field approximately 10m from façade of landowner dwelling on working farm.	Plate 8.1-6	Represents single property at centre of Windfarm (Landowner property), Shancloon townland, R183.

Location ID	Easting	Northing	Description	Photograph	Representative Properties
N7	532179	752681	Located south of proposed windfarm on raised garden within curtilage of dwelling of working	Plate 8.1-7	Represents three properties south of proposed windfarm, Beag More Townland.
			farm.		R217,R220, R181.
N8	530831	753314	Southwest of proposed windfarm on grass area/side garden of dwelling approximately 20m	Plate 8.1-8	Group of properties to west of proposed windfarm, along road at Derrymore townland
			from dwelling façade.		R144, R222, R228, R230, R233, R234, R237, R238, R241, R246, R252.
					Also properties farther south at Corrilaun Townland
N9	533030	754906	At edge of gravel driveway approximately 15m from dwelling, adjacent to agricultural fields and set back from public road with clear line of site to proposed turbines.		Group of properties North and centre of proposed windfarm, at Cloonbar Townland R184, R185, R186, R188, R189, R190, R191,R192, R194.
N10	532159	755038	Northwest of proposed windfarm positioned within rear garden of farm dwelling with mature treeline present. Approximately 15m	Plate 8.1-10	Properties north and centre of proposed windfarm at Cloonsheen Townland. R196, R197, R206, R208, R209.
			from dwelling and set back from trees.		KZU9.
N11	532362	755760	Located northwest of proposed windfarm in rear garden of farm dwelling adjacent to working farm	Plate 8.1-11	North and centre of proposed windfarm, along road through Cloonsheen Townland
					R2, R202, R207, R216, R227, R229, R235, R236,
					Also properties farther north of location above.

Location ID	Easting	Northing	Description	Photograph	Representative Properties
N12	532959	756712	North of proposed windfarm within curtilage of dwelling approximately 20m from façade and adjacent to public road.	Plate 8.1-12	Properties north and centre of proposed windfarm, at Tobberoe Townland R218, R225, R231, R232, R242, R245, R248, R251

Location N1 is north of the proposed wind farm. The noise monitor was placed in the front garden of dwelling adjacent to local road, in the direction of the proposed windfarm.

Noise sources noted during deployment and collection of the noise monitoring equipment included agricultural activities, livestock on neighbouring farm and birdsong.

Plate A8.1-1: Monitoring Location N1

Location N2

Location N2 is north-east of the proposed wind farm. The noise monitor was placed in the rear garden of dwelling adjoining agricultural lands.

During the deployment and collection of the noise monitoring equipment, noted noise sources included traffic movements audible on local road network and birdsong.

Plate A8.1-2: Monitoring Location N2

Location N3

Location N3 is east of the proposed wind farm. The noise monitor was placed within the curtilage of dwelling adjoining agricultural lands and stables. This was also the location of the rain gauge.

Noise sources noted during setting up of equipment included noise from farm activities and livestock (horses).

Plate A8.1-3: Monitoring Location N3

Location N4 is southeast of the proposed windfarm. The noise monitor was placed in an agricultural field agricultural field approximately 20m from farm dwelling. The noise monitor was positioned away from trees and agricultural machinery/sheds.

Noise sources noted during deployment and collection of equipment included wind noise in nearby trees, , birdsong and farm machinery operating.

Plate A8.1-4: Monitoring Location N4

Location N5

Location 5 is located south of the proposed windfarm. The noise monitor was set up in the garden to the side the dwelling set back approximately 10m from local road.

During deployment and collection of the noise monitor, noise sources noted included an excavator operating in a nearby field and local traffic movements.

Plate A8.1-5: Monitoring Location N5

Location N6 was positioned in an agricultural field approximately 10m from the façade of the landowner dwelling. The noise monitoring location was on working farm.

Noise sources noted during deployment and collection of equipment include farm machinery operating and birdsong.

Plate A8.1-6: Monitoring Location N6

Location N7

Location N7 was located south of the proposed windfarm. The noise monitor was set up on raised garden within curtilage of the dwelling. The noise monitoring location is next to a working farm.

Noise sources noted during equipment set up and deployment include farm machinery noise and wind noise in nearby trees.

Plate A8.1-7: Monitoring Location N7

Location N8 is located southwwest of proposed windfarm. The noise monitor was set up on a grass area to the side garden of the dwelling, approximately 20m from dwelling façade.

Noise sources noted during the equipment deployment and collection included dogs barking at the residence and birdsong.

Plate A8.1-8: Monitoring Location N8

Location N9

Location N9 is at the centre/north of the proposed windfarm. The noise monitor was deployed at the edge of the gravel driveway approximately 15m from dwelling, adjacent to agricultural fields and set back from public road with a clear line of site to the proposed turbines.

Noise sources noted during deployment and collection of equipment included Local traffic movements and birdsong.

Plate A8.1-9: Monitoring Location N9

Location N10

Location N10 is northwest of the proposed windfarm. The noise monitoring equipment was positioned within the rear garden/paddock of the farm dwelling. There is a mature treeline in the vicinity of the property. The noise monitoring location is approximately 15m from dwelling and set back from trees.

Noise sources noted during deployment and collection of equipment included wind induced noise from nearby trees and birdsong.

Plate A8.1-10: Monitoring Location N10

Location N11 is located northwest of the proposed windfarm. The noise monitor was placed in the rear garden of the farm dwelling. This location is next to a working farm. The noise monitoring location has a clear line of sight to proposed turbines.

Noise sources noted during equipment deployment and collection included farm machinery operating and livestock.

Plate A8.1-11: Monitoring Location N11

Location N12

Location N12 is north of the proposed windfarm. The noise monitor was set up within the curtilage of the dwelling approximately 20m from façade and adjacent to public road.

Noise sources noted during equipment deployment and collection include local traffic movements and birdsong.

Plate A8.1-12: Monitoring Location N12

Measurement Periods

The IOA GPG states "The duration of a background noise survey is determined only by the need to acquire sufficient valid data over the range of wind speeds. It is unlikely that this requirement can be met in less than 2 weeks." If insufficient wind data is collected after two weeks, the monitoring period will be extended subject to acquiring sufficient valid data over the range of wind speeds. Sufficient data was captured at all monitoring locations with between 2-4 weeks worth of data captured at all monitoring locations. Noise monitoring was conducted in three lots, summarised in Table 8.1.3 below.

Definition of Time Periods

The 2006 DoEHLG Wind Energy Development Guidelines do not provide the specific periods which are represented by daytime and night-time hours, therefore the definitions from ETSU-R-97 are taken as 07:00 to 23:00 hrs for daytime and 23:00 to 07:00 hrs for night-time. The following periods were analysed for this report:

Daytime hours 07:00 – 23:00 Monday to Sunday

Night-time hours 23:00 – 07:00

Monitoring Equipment

Baseline noise monitoring was carried out using Svantek Svan 977 and Svan 959, Larson Davis and Svantek 307 Class 1 sound level meters. Details of the noise monitoring equipment are presented in Table 8.1.3. The sound level meters were fitted with 1/2" microphones. The microphones connected to the Svantek sound level meters were fitted with open-pored polyurethane foam with a minimum diameter of 130mm. The Larson Davis noise microphones also have a secondary windshield. Calibration certificates for each sound level meter are provided in Appendix 8.2.

Monitoring Location	Lot No
N1	1
N2	1, 2
N3	1, 3
N4	1, 2
N5	1, 2
N6	1, 2
N7	1, 2
N8	1, 2
N9	1, 2
N10	2
N11	1
N12	1, 2
Lot 1: 7/12/22 to 21/12/22	2
1 -+ 2 16 /04 /22 + - 04 /02 /2	22

Lot 2: 16/01/23 to 01/02/23 Lot 3: 01/02/23 to 13/02/23

Table 8.1.3: Details of Noise Monitoring Equipment

Monitoring Location	Lot No: Meter Type	Serial Number
N1	1. Larson Davis Lxt	4665
N2	1: Svantek 977	69552
	2: Larson Davis Lxt	5122
N3	1: Svantek 977	34876
	3: Svantek 977	69556?
N4	1: Svantek 977	69556
	2: Larson Davis Lxt	4665
N5	1: Svantek 307	104985
	2: Larson Davis Lxt	5977
N6	1: Larson Davis Lxt	5122
	2: Larson Davis Lxt	6031
N7	1: Svantek 307	104990
	2: Larson Davis Lxt	6862
N8	1: Svantek 959	14775
	2: Larson Davis Lxt	5043
N9	1: : Larson Davis Lxt	6862
	2: Svantek 977	69552
N10	2: Larson Davis Lxt	5612
N11	1: Larson Davis Lxt	6031
N12	1: Larson Davis Lxt	4632
	2: Svantek 977	69556

A CR300 Series data logger was used to record rainfall (ARG 100) and this was located at two locations: N6 during Lot 1 and N6 during Lot 2, and N3 during Lot 3. This meteorological data was acquired every 10 minutes simultaneously with noise data.

Monitoring Protocol

Baseline noise measurements were undertaken at 12 locations surrounding the proposed wind farm. Equipment was installed in three lots.

- 1) Lot 1: 7th to 21st December 2022
- 2) Lot 2: 16th January 2022 to 19th January 2023
- 3) Lot 3 1st to 13th February 2023

The following monitoring protocol was carried out at each of the monitoring locations:

- 1. The sound level meters were calibrated on-site and set to log L_{A90} statistics on a fast time weighted response every ten minutes.
- 2. Each sound level meter microphone was mounted at 1.5 m above ground level and fitted with an enhanced windshield. Each microphone was placed at least 3.5 m from reflecting surfaces to obtain 'free field' conditions.
- 3. Wind speed and wind direction measurements were taken from permanent mast installed on site. Wind speed was measured at a range of heights and data from anemometers at 96 m and 103 m were used to extrapolate the wind speed data up to a hub height of 105 m.

The standardised 10 m wind speed was obtained from the turbine hub height wind speed by correcting it to 10 m height using a ground roughness factor of 0.05 m. Roughness length (or logarithmic) shear profile:

$$U_1 = U_2 \frac{\ln \left(\frac{H_1}{Z}\right)}{\ln \left(\frac{H_2}{Z}\right)}$$

where U_1 is the wind speed to be calculated, U_2 is the measured wind speed, H_1 is the height of the measured wind speed to be calculated (10m), H_2 is the height of the measured wind speed and z is the ground roughness length (m). A roughness length of 0.05m is used to standardise hub height wind speeds to 10m height in the IEC 61400-11:2012 standard.

- 4. The L_{A90} statistic measurements were synchronised with the 10 m standardised wind speeds derived from the on-site meteorological mast data.
- 5. A logging rain gauge was also installed (at Monitoring Locations N3 and N6) and similarly logged rainfall events over successive 10-minute intervals, also synchronised to the noise level and wind speed measurements.
- 6. After the monitoring was completed, the noise meters were re-tested using the calibration noise source to ensure that the meters had not drifted.

Analysis of the Baseline Data

Following collection of the site data, the following protocol was used to analyse the baseline data:

- 1. The raw baseline L_{A90} noise data was reviewed to determine whether there are any periods of non-consistent noise level due to equipment malfunction.
- 2. The raw noise level data was then correlated with the time synchronised wind speed and rainfall data. Preliminary data analysis was used to remove datasets (LA90, wind speed and occurrence of rainfall event) which contain a rainfall event as these data sets are required to be removed from further analysis in line with best practice as outlined in the IOA Good Practice Guide and Supplementary Guidance Note 2 on Data Processing.
- 3. The prevailing background noise during for daytime periods 07:00 to 23:00. The prevailing background noise during night-time periods excludes early morning periods to remove the dawn chorus which is not prevalent through that whole year, with data recorded between 04:00 and 07:00 was removed from further analysis.

- 4. Once the rainfall events have been accounted for, the remaining data was graphed using a wind speed based plot to establish whether there are any remaining data outliers, representing atypical noise sources or events.
- 5. Once the remaining data sets were found to be representative of the noise environment, they were analysed to ensure that sufficient data remained to provide sufficient data coverage over the necessary wind speeds. The prevailing background noise trend was not extended beyond the range covered by adequate data sets. See Section 'Data Available for Determination of Prevailing Background Noise Levels' for details.
- 6. A 'best fit' trend (not higher than a fourth order polynomial) was then derived to present the assumed prevailing background noise level at each monitoring location. See Section 'Results' for details.

Data Available for Determination of Prevailing Background Noise Levels

The requirement for the survey duration is dictated by the range of wind speeds to be collected. The IOA Good Practice Guide to the Application of ETSU-R-97¹ for the Assessment and Rating of Wind Turbine Noise, (May 2013) states that "As a guideline, no fewer than 200 data points should be recorded in each of the amenity hours and night-time periods with no fewer than 5 data points in any 1 m/s wind speed bin."

The Wind Energy Development Guidelines (Department of Environment, Heritage and Local Government, 2006) do not provide the specific periods which are represented by daytime and night-time hours, therefore the definitions from ETSU-R-97 are taken as 07:00 to 23:00 hrs for daytime and 23:00 to 07:00 hrs for night-time.

Prevailing background noise levels were derived for daytime periods. The number of datasets at each integer wind speed are shown in Tables 8.1.4.

¹ Department of Trade and Industry (1996), The Assessment and Rating of Noise from Wind Farms Report ETSU-R-97

Table 8.1.4: Number of Valid Datasets: Noise Monitoring Locations N1-N12- Daytime

Wind Speed (at standardised 10 m	Valid Datasets											
height), m/s	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
0	0	16	0	18	18	18	18	89	16	18	0	18
1	16	86	36	91	91	87	83	218	81	65	15	82
2	73	233	103	234	231	213	218	379	231	159	73	222
3	166	379	199	390	394	387	380	401	388	228	162	393
4	173	413	286	416	418	409	410	409	415	248	172	420
5	203	402	433	410	410	397	394	247	411	205	204	408
6	98	249	338	249	249	246	245	245	249	147	98	248
7	78	245	253	243	243	242	244	166	245	165	83	245
8	64	164	180	159	161	162	164	113	166	104	63	158
9	66	114	130	113	113	113	113	101	114	50	66	114
10	91	101	132	100	100	101	101	25	101	10	91	101
11	25	25	42	25	25	25	25	5	25	0	25	25
12	5	5	11	5	5	5	5	0	5	0	5	5
Total Number of Data Points	1058	2432	2143	2453	2458	2405	2400	2398	2447	1399	1057	2439

Table 8.1.4: Number of Valid Datasets: Noise Monitoring Locations N1-N12- Nighttime

Wind Speed (at standardised 10 m	Valid Datasets											
height), m/s	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
0	0	1	0	1	1	1	1	1	1	1	1	1
1	2	27	10	27	27	27	27	27	27	25	27	27
2	20	56	42	56	56	56	56	56	56	36	56	56
3	41	71	48	72	72	72	72	72	72	31	72	72
4	78	162	109	165	165	165	165	165	165	87	165	165
5	52	110	109	110	110	110	110	110	110	58	110	109
6	17	74	91	74	74	74	74	74	74	57	74	71
7	23	66	97	66	66	66	66	66	66	43	66	62
8	32	80	92	80	80	80	80	80	80	48	80	78
9	27	45	39	45	45	45	45	45	45	18	45	45
10	22	28	22	28	28	28	28	28	28	6	28	28
11	9	9	9	9	9	9	9	9	9	0	9	9
12	5	5	5	5	5	5	5	5	5	0	5	5
Total Number of Data Points	329	735	674	739	739	739	739	739	739	410	739	729

Results

In this section, the prevailing background noise level in dB LA90 relative to standardised 10 m height wind speeds are provided for each monitoring location as per the requirements of the survey. The prevailing background noise level is plotted as a solid line for each daytime and night-time periods at each monitoring location. In all cases, the highest order of polynomial used is a fourth order polynomials provided lines of best fit to the scatter data.

The prevailing night time noise for locations N2 and N9 at low windspeeds are determined by the noise floor of the equipment type which was different for lots 1 and 2. This has no effect on the night noise limit at these locations.

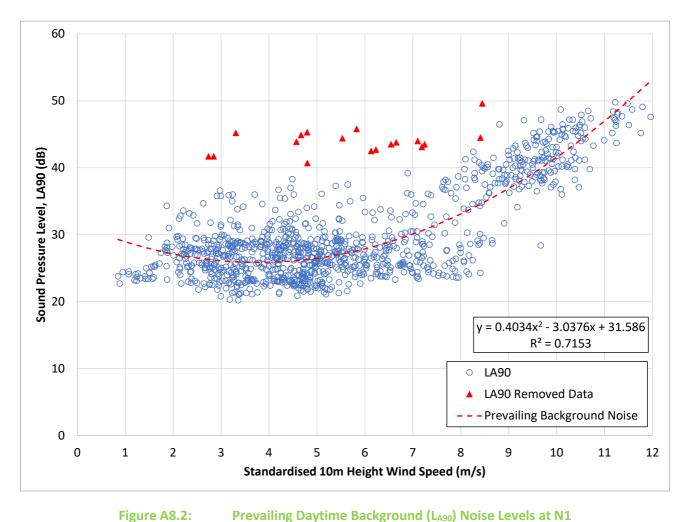


Figure A8.2:

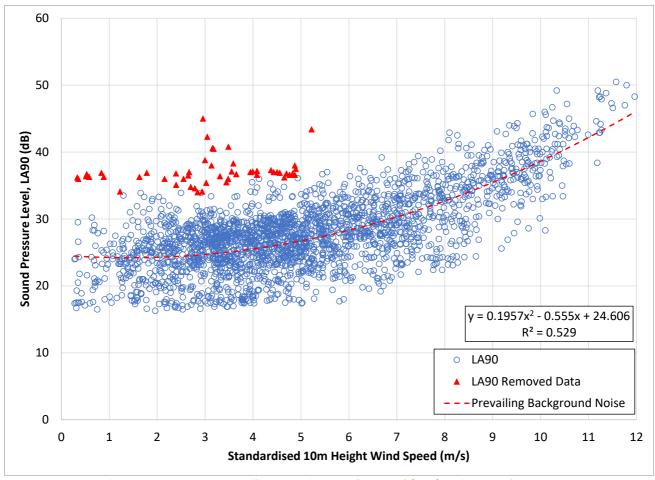


Figure A8.3: Prevailing Daytime Background (L_{A90}) Noise Levels at N2

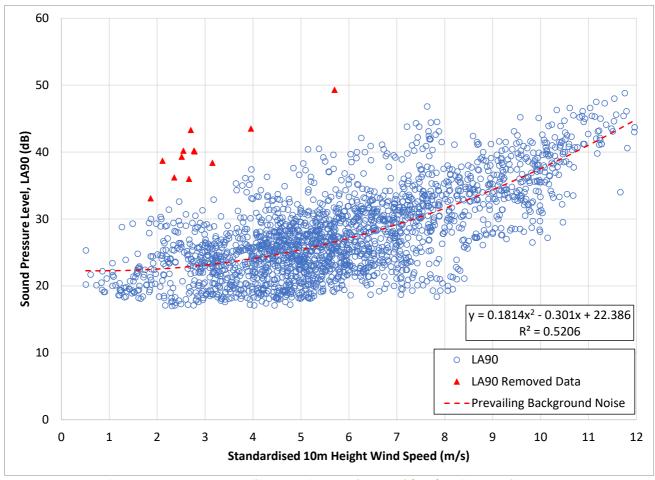


Figure A8.4: Prevailing Daytime Background (L_{A90}) Noise Levels at N3

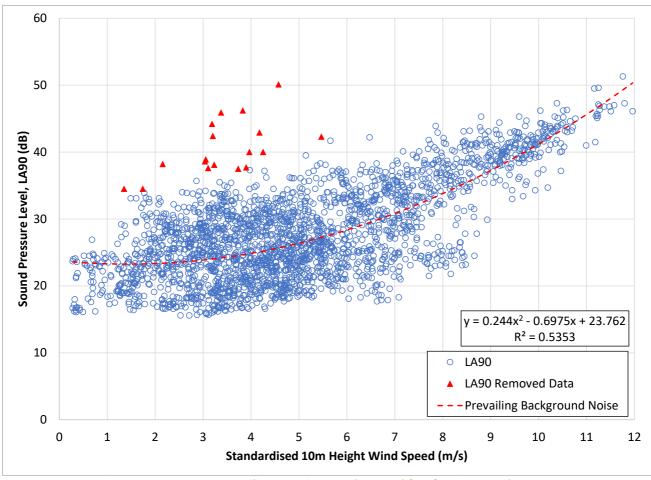


Figure A8.5: Prevailing Daytime Background (L_{A90}) Noise Levels at N4

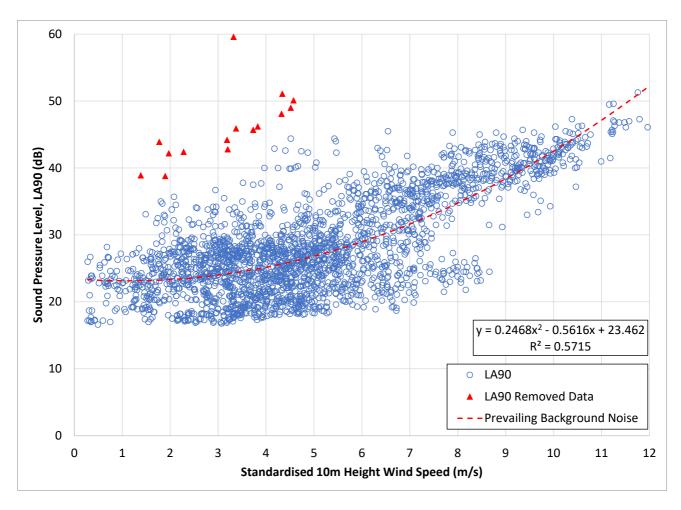


Figure A8.6: Prevailing Daytime Background (L_{A90}) Noise Levels at N5

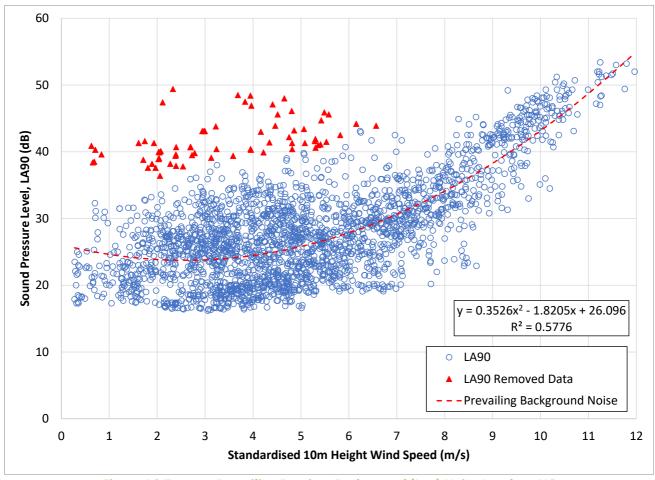


Figure A8.7: Prevailing Daytime Background (L_{A90}) Noise Levels at N6

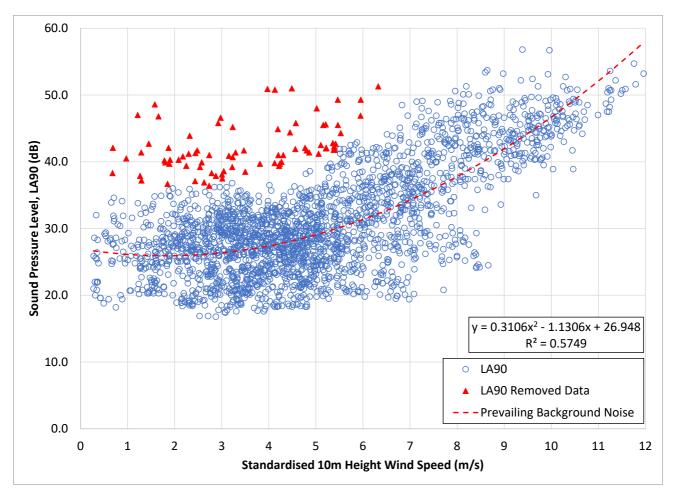


Figure A8.8: Prevailing Daytime Background (L_{A90}) Noise Levels at N7

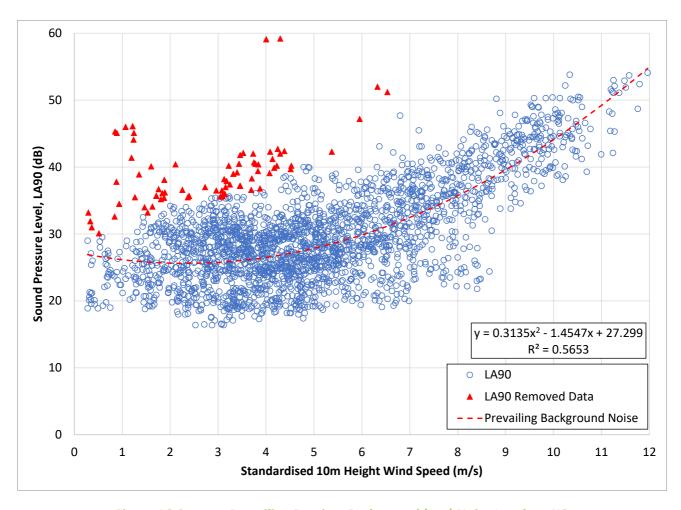


Figure A8.9: Prevailing Daytime Background (L_{A90}) Noise Levels at N8

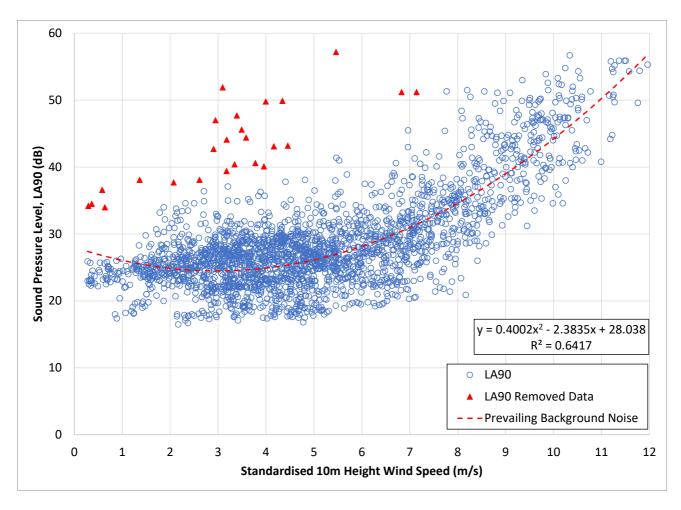


Figure A8.10: Prevailing Daytime Background (L_{A90}) Noise Levels at N9

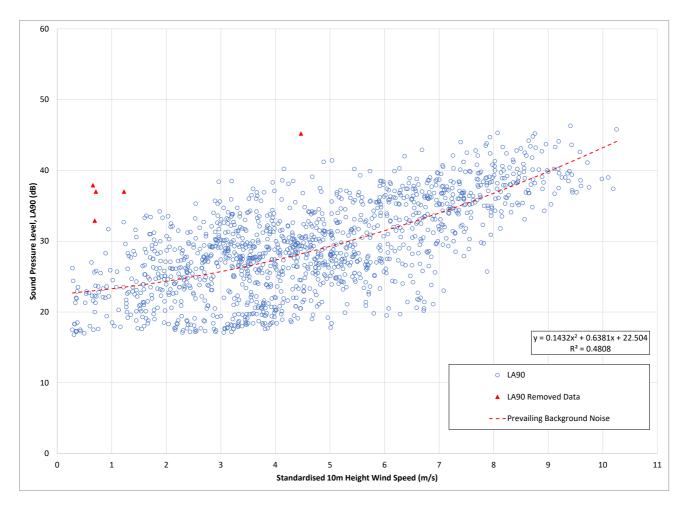


Figure A8.11: Prevailing Daytime Background (L_{A90}) Noise Levels at N10

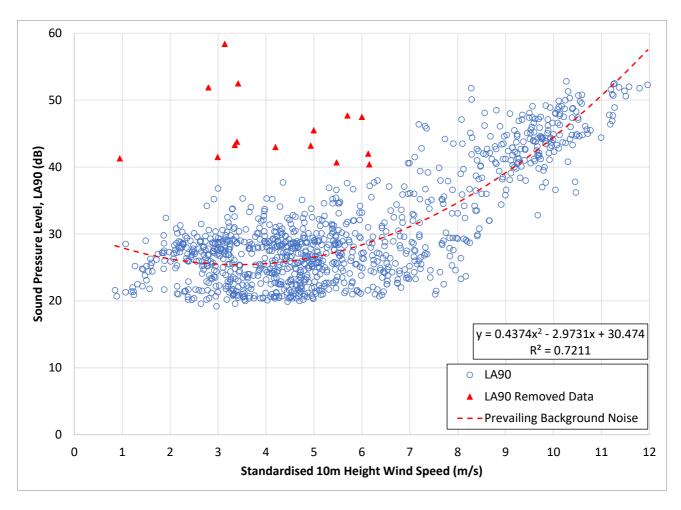


Figure A8.12: Prevailing Daytime Background (L_{A90}) Noise Levels at N11

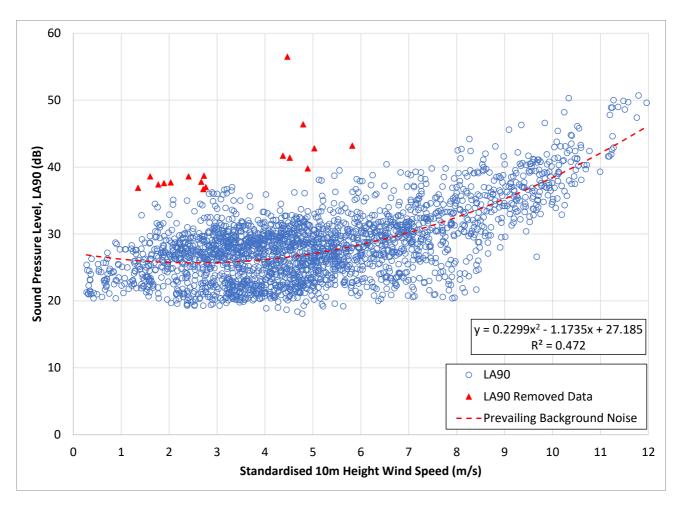


Figure A8.13: Prevailing Daytime Background (L_{A90}) Noise Levels at N12

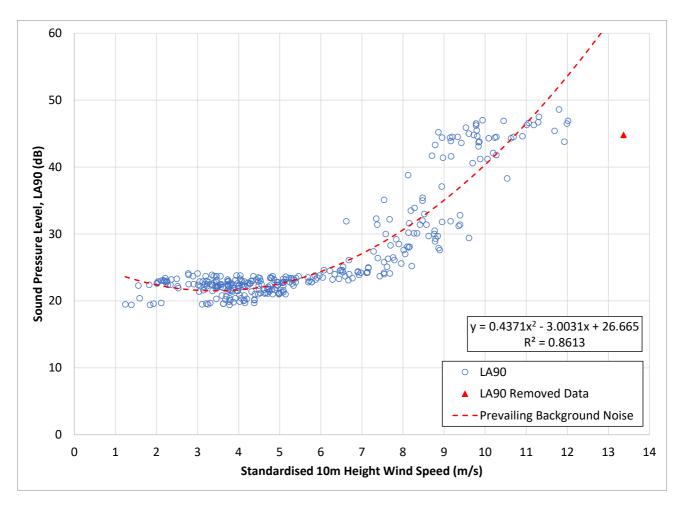


Figure A8.14: Prevailing Night time Background (L_{A90}) Noise Levels at N1

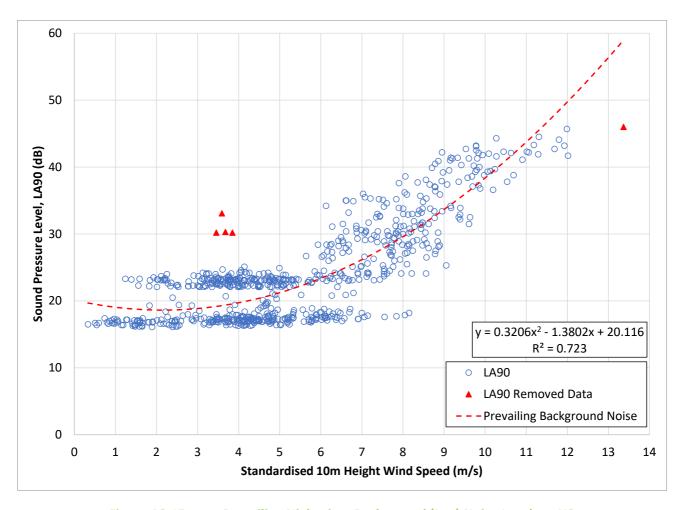


Figure A8.15: Prevailing Night time Background (L_{A90}) Noise Levels at N2

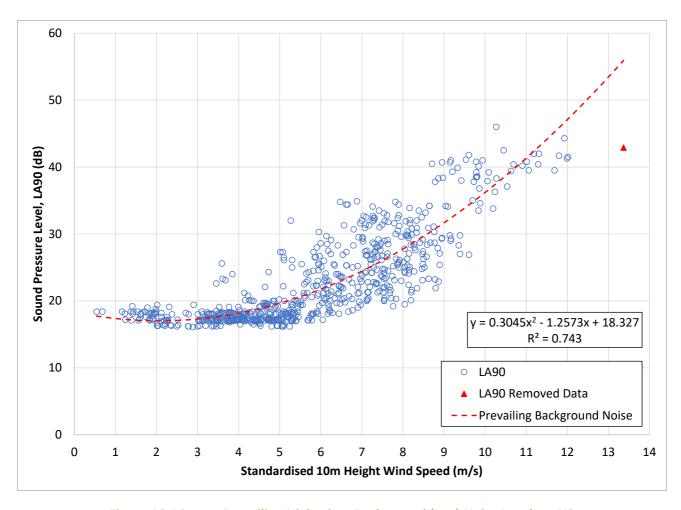


Figure A8.16: Prevailing Night time Background (L_{A90}) Noise Levels at N3

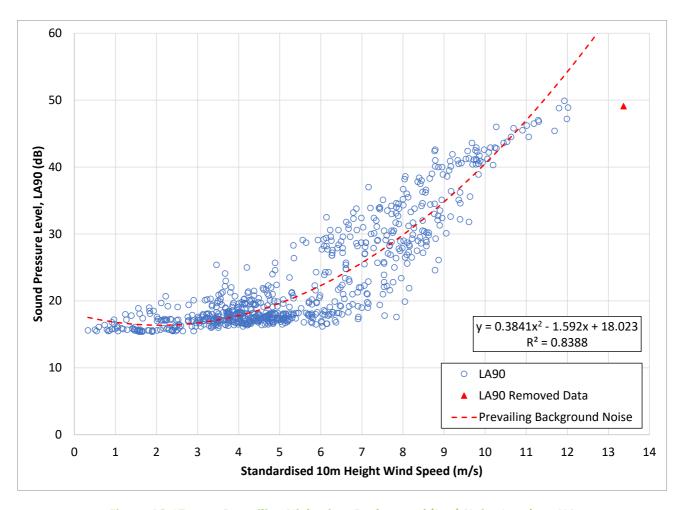


Figure A8.17: Prevailing Night time Background (L_{A90}) Noise Levels at N4

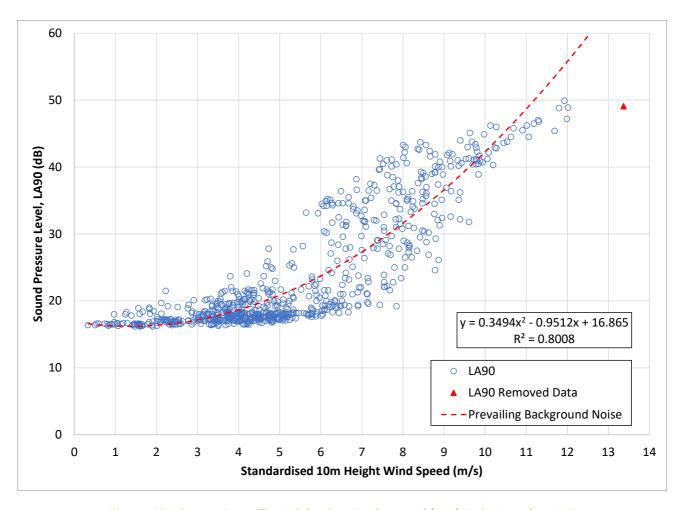


Figure A8.18: Prevailing Night time Background (L_{A90}) Noise Levels at N5

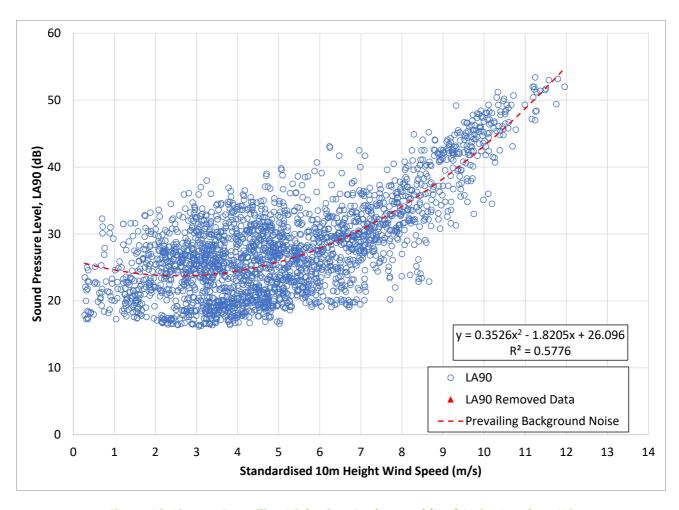


Figure A8.19: Prevailing Night time Background (L_{A90}) Noise Levels at N6

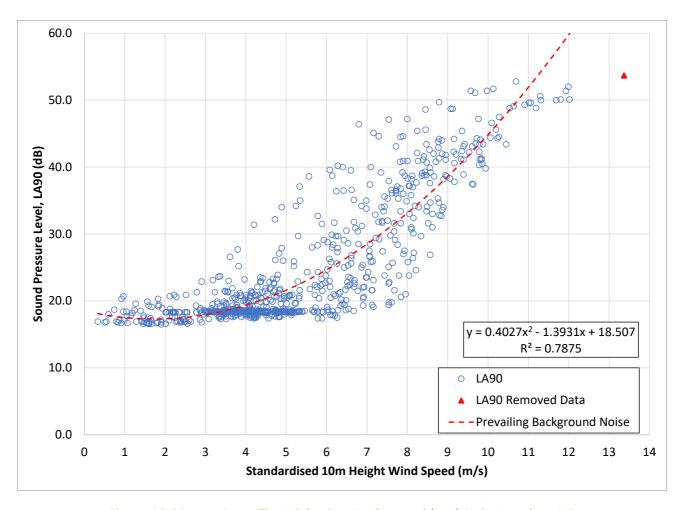


Figure A8.20: Prevailing Night time Background (L_{A90}) Noise Levels at N7

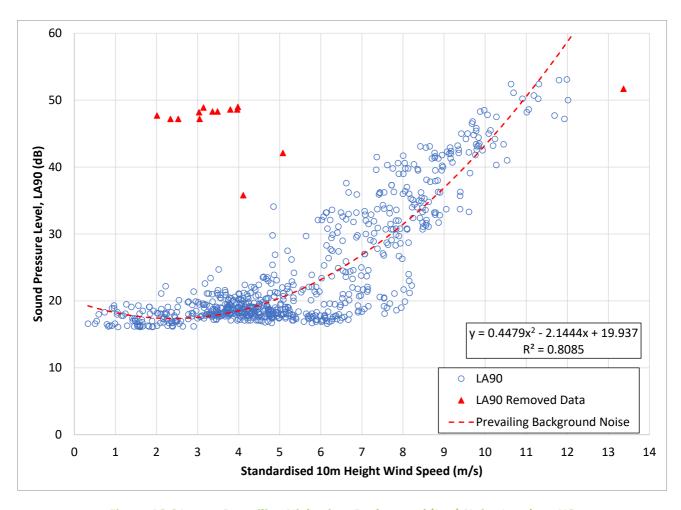


Figure A8.21: Prevailing Night time Background (L_{A90}) Noise Levels at N8

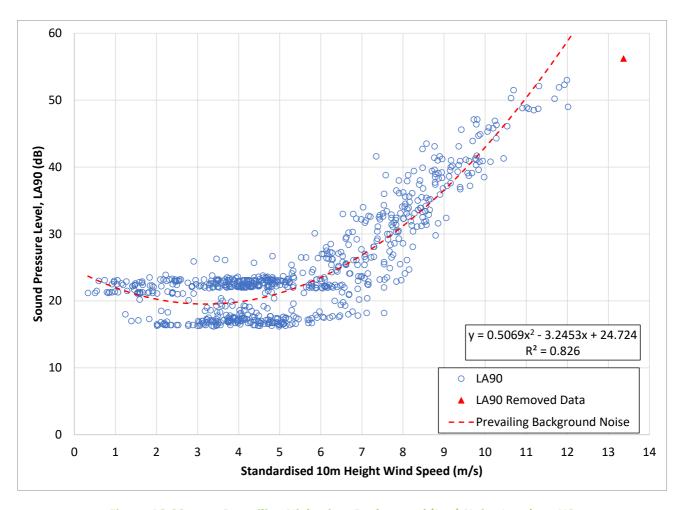


Figure A8.22: Prevailing Night time Background (L_{A90}) Noise Levels at N9

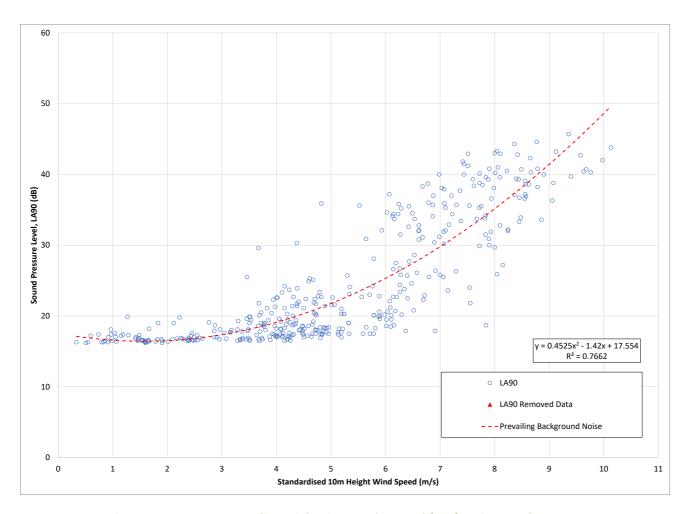


Figure A8.23: Prevailing Night time Background (L_{A90}) Noise Levels at N10

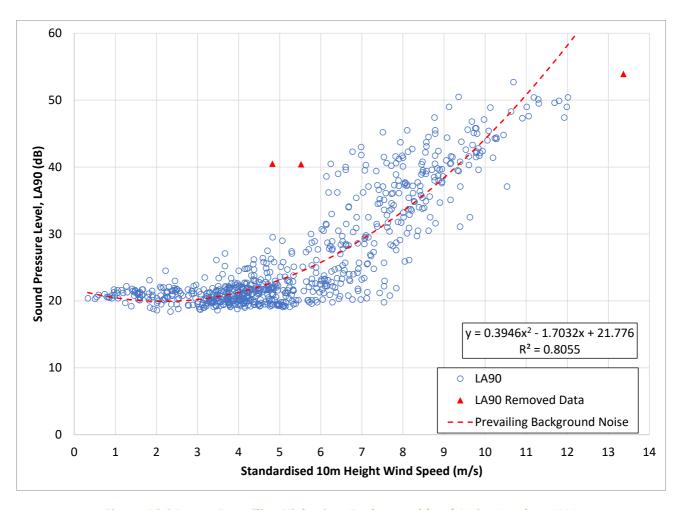


Figure A8.24: Prevailing Night time Background (L_{A90}) Noise Levels at N11

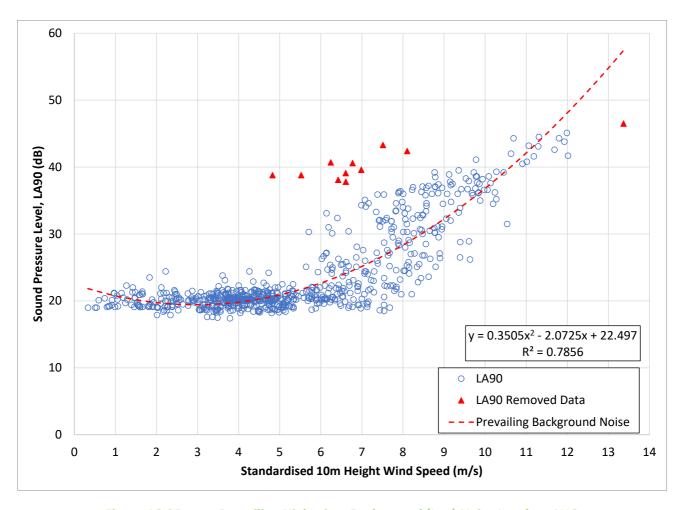


Figure A8.25: Prevailing Night time Background (L_{A90}) Noise Levels at N12

The assumed prevailing daytime and night time noise levels at the 12 noise monitoring locations is presented in Tables 8.1.7 and 8.1.8.

Table 8.1.7: Prevailing Background Noise – Daytime Periods

	Prevailing Background Noise LA90,10min (dB) at Standardised 10 m Height Wind Speed (m/s)										
Location	2	3	4	5	6	7	8	9	10	11	12
N1	25.9*	25.9	25.9	26.5	27.9	30.1	33.1	36.9	41.6	47	53.2
N2	24.3	24.7	25.5	26.7	28.3	30.3	32.7	35.5	38.6	42.2	46.1
N3	22.5	23.1	24.1	25.4	27.1	29.2	31.6	34.4	37.5	41	44.9
N4	23.3	23.9	24.9	26.4	28.4	30.8	33.8	37.2	41.2	45.6	50.5
N5	23.3	24	25.2	26.8	29	31.6	34.8	38.4	42.5	47.1	52.3
N6	23.8*	23.8	24.5	25.8	27.9	30.6	34.1	38.3	43.2	48.7	55
N7	25.9	26.4	27.4	29.1	31.3	34.3	37.8	41.9	46.7	52.1	58.1
N8	25.6	25.8	26.5	27.9	29.9	32.5	35.7	39.6	44.1	49.2	49.2§
N9	24.5*	24.5	24.9	26.1	28.1	31	34.6	39	44.2	50.2	57.1
N10	24.4	25.7	27.3	29.3	31.5	34	36.8	39.8	43.2	43.2§	43.2§
N11	25.5*	25.5	25.6	26.5	28.4	31.1	34.7	39.1	44.5	50.7	57.8
N12	25.7*	25.7	26.2	27.1	28.4	30.2	32.5	35.2	38.4	42.1	46.2

^{§ -} noise level restricted to the highest derived point

^{* -} noise level restricted to lowest derived point

Table 8.1.7: Prevailing Background Noise – Night time Periods


l a satis u	Prevailing Background Noise LA90,10min (dB) at Standardised 10 m Height Wind Speed (m/s)										
Location	2	3	4	5	6	7	8	9	10	11	12
N1	21.6*	21.6	21.6	22.6	24.4	27.1	30.6	35.0	40.3	46.5	53.6
N2	18.6	18.7	19.4	20.8	22.7	25.3	28.4	32.2	36.6	41.5	47.1
N3	17.0	17.3	18.2	19.7	21.7	24.4	27.8	31.7	36.2	41.3	47.1
N4	16.4	16.7	17.8	19.7	22.3	25.7	29.9	34.8	40.5	47.0	54.2
N5	16.4	17.2	18.7	20.8	23.7	27.3	31.6	36.6	42.3	48.7	55.8
N6	23.8*	23.8	24.5	25.8	27.9	30.6	34.1	38.3	43.2	48.7	55.0
N7	17.3	18.0	19.4	21.6	24.6	28.5	33.1	38.6	44.8	51.9	59.8
N8	17.4	17.5	18.5	20.4	23.2	26.9	31.4	36.9	43.3	50.5	58.7
N9	19.6*	19.6	19.9	21.2	23.5	26.8	31.2	36.6	43.0	50.4	58.8
N10	16.5	17.4	19.1	21.8	25.3	29.8	35.2	41.4	48.6	48.6§	48.6§
N11	19.9	20.2	21.3	23.1	25.8	29.2	33.4	38.4	44.2	50.8	58.2
N12	19.4*	19.4	19.8	20.9	22.7	25.2	28.3	32.2	36.8	42.1	48.1

^{§ -} noise level restricted to the highest derived point
* - noise level restricted to lowest derived point

APPENDIX 8.2

Equipment Calibration Certificates

MTS Calibration Ltd,
The Grange Business Centre,
Belasis Avenue,
Billingham TS23 1LG,
England
Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

24 8/-

Date of Issue:

22 April 2022

Certificate Number:

36882

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland Instrument Make:

Larson Davis

Instrument Model:

LxT1L

Serial Number:

0006031

Associated Equipment Preamplifier

Make Larson Davis PCB

Model PRMLxT1L Serial number

Microphone Calibrator

PCB Larson Davis 377B02 CAL200 069967 322919 9175

Calibrator supplied by

MTS for this calibration

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages. Tests performed Section Results of test Page Comments Calibration Certificate 22 1 Additional information 2 Indication with Calibrator Supplied 10 No Limit 3 Self-Generated Noise 11 No Limit 3 Frequency and Time-weightings at 1kHz Complies Long term stability 15 Complies High stability 21 Complies Acoustic Tests 12 Complies 4 Frequency Weighting A 13 Complies 5 Frequency Weighting C 13 Complies 6 Frequency Weighting Z 13 Complies 7 Level Linearity 16 Complies 8 Level Linearity Range Control 17 n/a SLM only has one range Tone-burst Response 18 Complies 9 Peak C sound level 19 Complies 10 Overload indication 20 Complies 11

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Microphone full frequency response Filter calibration, third octave or octave

Reference

36884 36882F See additional certificate See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

MTS Calibration Ltd. The Grange Business Centre. Belasis Avenue, Billingham TS23 1LG, England Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

Date of Issue:

01 June 2022

Certificate Number:

37032

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland

Instrument Make:

Larson Davis

Instrument Model:

LxT1L

Serial Number:

0005977

Associated Equipment

Make Larson Davis Model

Serial number

Preamplifier Microphone Calibrator

PCB Larson Davis PRMLxT1L 377B02 CAL200

055799 314929 9175

Calibrator supplied by

MTS for this calibration

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages. Results of test

l ests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17		n/a	SLM only has one range
Tone-burst Response	18	Complies	9	
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Reference

Microphone full frequency response Filter calibration, third octave or octave

37034 37032F See additional certificate

See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

MTS Calibration Ltd, The Grange Business Centre, Belasis Avenue, Billingham TS23 1LG, England

Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

12A Shi

Issued by:

MTS Calibration Ltd

Date of Issue:

23 August 2021

Certificate Number:

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland

Instrument Make:

Larson Davis Instrument Model: 1 xT1I

Serial Number:

0005122

Associated Equipment

Calibrator supplied by

Preamplifier

Make Larson Davis PCB

Model PRMLxT1L Serial number

Microphone Calibrator

Larson Davis the Client, with the SLM 377B02 **CAL200** 042855 174426 9175

Test results summary, detailed results are shown on subsequent pages.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Tests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17		n/a	SLM only has one range
Tone-burst Response	18	Complies	9	
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Microphone full frequency response Filter calibration, third octave or octave Reference

36183 36181F See additional certificate

See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

MTS Calibration Ltd,
The Grange Business Centre,
Belasis Avenue,
Billingham TS23 1LG,
England
Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

21 8/

Date of Issue:

11 November 2022

Certificate Number: 37757

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland Instrument Make:

Larson Davis

Instrument Model:

LxT1L

Serial Number:

0004665

000466

Associated Equipment
Preamplifier
Microphone
Calibrator
Calibrator supplied by

Make
PCB
PCB
Larson Davis
MTS for this calibration

Model PRMLxT1L 377B02 CAL200 9175

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages.

Tests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17		n/a	SLM only has one range
Tone-burst Response	18	Complies	9	
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Reference

37759

See additional certificate

Microphone full frequency response Filter calibration, third octave or octave

37757F

See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Certificate

Certificate Number 2021013671

Customer:

Environmental Measurement Unit 12 Tallaght Business Centre Whitestown Business Park Dublin, 24, Ireland

Model NumberLxT SEProcedure NumberD0001.8378Serial Number0006862TechnicianRon HarrisTest ResultsPassCalibration Date25 Oct 2021

Initial Condition As Manufactured Calibration Due

DescriptionSound Expert LxTHumidity50.6%RH± 2.0 %RH

Class 1 Sound Level Meter Static Pressure 85.03 kPa ± 0.13 kPa

Firmware Revision: 2.404

Evaluation Method Tested electrically using Larson Davis PRMLxT1L S/N 070108 and a 12.0 pF capacitor to simulate

microphone capacitance. Data reported in dB re 20 μPa assuming a microphone sensitivity of 23.6

Temperature

23.45 °C

± 0.25 °C

mV/Pa.

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1 ANSI S1.4-2014 Class 1
IEC 60804:2000 Type 1 ANSI S1.4 (R2006) Type 1
IEC 61252:2002 ANSI S1.25 (R2007)
IEC 61672:2013 Class 1 ANSI S1.43 (R2007) Type 1
IEC 61260:2001 Class 1 ANSI S1.11 (R2009) Class 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. **Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.**

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

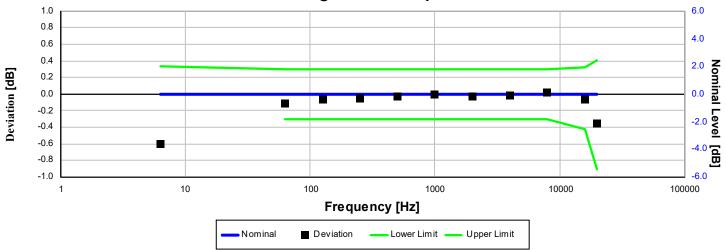
This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, I770.01 Rev O Supporting Firmware Version 4.0.5, 2019-09-10

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

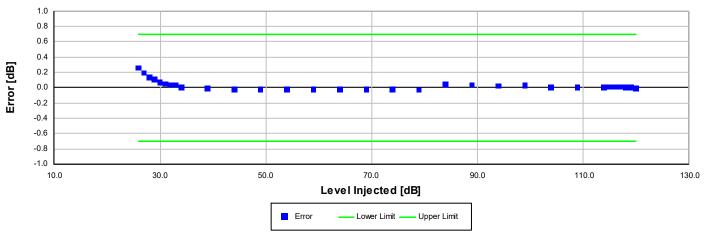
2021-10-28T18:41:33


Certificate Number 2021013671

Standards Used							
Description	Cal Date	Cal Due	Cal Standard				
Hart Scientific 2626-H Temperature Probe	2021-02-04	2022-08-04	006767				
SRS DS360 Ultra Low Distortion Generator	2021-01-05	2022-01-05	007118				

Z-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5


Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
6.31	-0.61	-0.61	-1.11	0.33	0.15	Pass
63.10	-0.11	-0.11	-0.30	0.30	0.15	Pass
125.89	-0.07	-0.07	-0.30	0.30	0.15	Pass
251.19	-0.05	-0.05	-0.30	0.30	0.15	Pass
501.19	-0.03	-0.03	-0.30	0.30	0.15	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.15	Pass
1,995.26	-0.02	-0.02	-0.30	0.30	0.15	Pass
3,981.07	-0.01	-0.01	-0.30	0.30	0.15	Pass
7,943.28	0.02	0.02	-0.30	0.30	0.15	Pass
15,848.93	-0.06	-0.06	-0.42	0.32	0.15	Pass
19,952.62	-0.35	-0.35	-0.91	0.41	0.15	Pass

A-weighted Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
26.00	0.26	-0.70	0.70	0.16	Pass
27.00	0.20	-0.70	0.70	0.16	Pass
28.00	0.14	-0.70	0.70	0.17	Pass
29.00	0.11	-0.70	0.70	0.16	Pass
30.00	0.07	-0.70	0.70	0.35	Pass
31.00	0.05	-0.70	0.70	0.16	Pass
32.00	0.04	-0.70	0.70	0.16	Pass
33.00	0.04	-0.70	0.70	0.16	Pass
34.00	0.01	-0.70	0.70	0.16	Pass
39.00	0.00	-0.70	0.70	0.16	Pass
44.00	-0.02	-0.70	0.70	0.16	Pass
49.00	-0.02	-0.70	0.70	0.16	Pass
54.00	-0.02	-0.70	0.70	0.16	Pass
59.00	-0.02	-0.70	0.70	0.16	Pass
64.00	-0.02	-0.70	0.70	0.16	Pass
69.00	-0.02	-0.70	0.70	0.16	Pass
74.00	-0.02	-0.70	0.70	0.16	Pass
79.00	-0.03	-0.70	0.70	0.16	Pass
84.00	0.04	-0.70	0.70	0.16	Pass
89.00	0.04	-0.70	0.70	0.16	Pass
94.00	0.02	-0.70	0.70	0.16	Pass
99.00	0.03	-0.70	0.70	0.16	Pass
104.00	0.01	-0.70	0.70	0.15	Pass
109.00	0.01	-0.70	0.70	0.15	Pass
114.00	0.01	-0.70	0.70	0.15	Pass
115.00	0.01	-0.70	0.70	0.15	Pass
116.00	0.01	-0.70	0.70	0.15	Pass
117.00	0.01	-0.70	0.70	0.15	Pass
118.00	0.00	-0.70	0.70	0.15	Pass
119.00	0.01	-0.70	0.70	0.15	Pass
120.00	-0.01	-0.70	0.70	0.15	Pass
	En	d of measurement res	ults		

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration [µs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result		
116.15	40	Negative Pulse	117.55	116.06	118.06	0.15	Pass		
		Positive Pulse	117.51	116.01	118.01	0.15	Pass		
	30	Negative Pulse	116.59	116.06	118.06	0.15	Pass		
		Positive Pulse	116.56	116.01	118.01	0.15	Pass		
	End of measurement results								

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

mplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
104.15	3	-0.16	± 0.50	0.15 ‡	Pass
	5	-0.17	± 1.00	0.16 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
94.15	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.14	± 1.00	0.15 ‡	Pass
	10	-0.19	± 1.50	0.15 ‡	Pass
84.15	3	-0.14	± 0.50	0.15 ‡	Pass
	5	-0.14	± 1.00	0.15 ‡	Pass
	10	-0.26	± 1.50	0.15 ‡	Pass

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
104.15	3	-0.15	± 0.50	0.15 ‡	Pass
	5	-0.12	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
94.15	3	-0.14	± 0.50	0.15 ‡	Pass
	5	-0.12	± 1.00	0.15 ‡	Pass
	10	-0.16	± 1.50	0.15 ‡	Pass
84.15	3	-0.14	± 0.50	0.15 ‡	Pass
	5	-0.13	± 1.00	0.15 ‡	Pass
	10	-0.23	± 1.50	0.15 ±	Pass

2021-10-28T18:41:33

Certificate Number 2021013671

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result			
0 dB Gain	84.02	83.90	84.10	0.15	Pass			
0 dB Gain, Linearity	21.32	20.30	21.70	0.16	Pass			
OBA Low Range	84.00	83.90	84.10	0.15	Pass			
OBA Normal Range	84.00	83.20	84.80	0.15	Pass			
End of measurement results								

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	9.42	16.00	Pass
C-weight Noise Floor	13.34	18.00	Pass
Z-weight Noise Floor	20.03	25.00	Pass

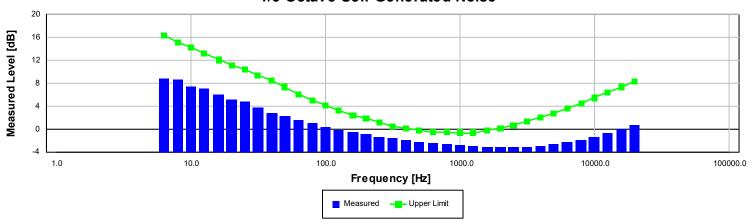
-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	113.12	112.35	113.95	0.15	Pass
THD	-57.00		-50.00	0.01 ‡	Pass
THD+N	-55.46		-50.00	0.01 ‡	Pass
		T 1 0			

-- End of measurement results--



2021-10-28T18:41:33

1/3-Octave Self-Generated Noise

The SLM is set to low range.

requency [Hz]	Test Result [dB]	Upper limit [dB]	Resul
6.30	8.89	16.30	Pas
8.00	8.62	15.20	Pas
10.00	7.57	14.20	Pas
12.50	7.12	13.20	Pas
16.00	6.04	12.10	Pas
20.00	5.14	11.10	Pas
25.00	4.84	10.40	Pas
31.50	3.89	9.40	Pas
40.00	2.80	8.60	Pas
50.00	2.23	7.40	Pas
63.00	1.52	6.10	Pas
80.00	1.01	5.00	Pas
100.00	0.40	4.20	Pas
125.00	-0.15	3.30	Pas
160.00	-0.42	2.40	Pas
200.00	-0.83	1.90	Pas
250.00	-1.45	1.20	Pas
315.00	-1.56	0.60	Pas
400.00	-1.83	0.20	Pas
500.00	-2.26	-0.10	Pas
630.00	-2.46	-0.50	Pas
800.00	-2.65	-0.50	Pas
1,000.00	-2.84	-0.60	Pas
1,250.00	-2.95	-0.60	Pas
1,600.00	-3.04	-0.20	Pas
2,000.00	-3.11	0.20	Pas
2,500.00	-3.08	0.70	Pas
3,150.00	-3.04	1.40	Pas
4,000.00	-2.90	2.10	Pas
5,000.00	-2.62	2.80	Pas
6,300.00	-2.27	3.70	Pas
8,000.00	-1.85	4.60	Pas
10,000.00	-1.31	5.50	Pas
12,500.00	-0.71	6.40	Pas
16,000.00	-0.03	7.40	Pas
20,000.00	0.70	8.30	Pas

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-10-28T18:41:33

MTS Calibration Ltd,
The Grange Business Centre,
Belasis Avenue,
Billingham TS23 1LG,
England
Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

RASL-.

Date of Issue:

15 September 2022 Ce

Certificate Number: 37476

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland Instrument Make:

Larson Davis

Instrument Model:

LxT1L

Serial Number:

0005043

Associated Equipment Preamplifier Microphone Make Larson Davis PCB Model PRMLxT1L Serial number 069969 322959

9175

Calibrator
Calibrator supplied by

Larson Davis
MTS for this calibration

377B02 CAL200

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages.

Tests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	9 03/03/75/76
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17	1000	n/a	SLM only has one range
Tone-burst Response	18	Complies	9	
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Microphone full frequency response Filter calibration, third octave or octave Reference

37478 37376F

See additional certificate

See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

MTS Calibration Ltd, The Grange Business Centre, Belasis Avenue. Billingham TS23 1LG, England Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

Date of Issue:

13 May 2022

Certificate Number:

36957

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland

Instrument Make:

Larson Davis

Instrument Model: Serial Number:

Make

LxT1L 0005612

Associated Equipment Preamplifier

Larson Davis Microphone PCB Calibrator Larson Davis Calibrator supplied by the Client, with the SLM

Model PRMLxT1L

Serial number 055648 306361

9175

377B02 CAL200

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages.

Tests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17	27.00	n/a	SLM only has one range
Tone-burst Response	18	Complies	9	Tam any mas one range
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Microphone full frequency response Filter calibration, third octave or octave

Reference 36959 36957F

See additional certificate See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

MTS Calibration Ltd, The Grange Business Centre, Belasis Avenue. Billingham TS23 1LG, England Telephone: 01642 876 410

CERTIFICATE OF CALIBRATION

Page 1 of 11 pages

Approved Signatory:

Issued by:

MTS Calibration Ltd

Date of Issue:

23 May 2022

Certificate Number: 36988

Tony Sherris

Sound Level Meter

Sound Level Meter Periodic Tests to EN 61672-3: 2013 Class 1

Client:

Environmental Measurements Unit 12, Tallaght Business Centre Whitestown Business Park Co.Dublin 24, Ireland

Instrument Make:

Instrument Model:

Larson Davis LxT1L

Serial Number:

0004632

Associated Equipment

Calibrator supplied by

Preamplifier

Make Larson Davis

Model PRMLxT1L Serial number

Microphone Calibrator

PCB Larson Davis the Client, with the SLM 377B02 CAL200 036031 157403 9175

The measurements were performed at The Grange Business Centre, Belasis Avenue, TS23 1LD. The results only apply to the items tested.

Periodic tests were performed in accordance with procedures from IEC 61672-3:2013 Class 1

Test results summary, detailed results are shown on subsequent pages.

Tests performed	Section	Results of test	Page	Comments
Calibration Certificate	22		1	
Additional information			2	
Indication with Calibrator Supplied	10	No Limit	3	
Self-Generated Noise	11	No Limit	3	
Frequency and Time-weightings at 1kHz	14	Complies	3	
Long term stability	15	Complies	3	
High stability	21	Complies	3	
Acoustic Tests	12	Complies	4	
Frequency Weighting A	13	Complies	5	
Frequency Weighting C	13	Complies	6	
Frequency Weighting Z	13	Complies	7	
Level Linearity	16	Complies	8	
Level Linearity Range Control	17	7 1 - S-W	n/a	SLM only has one range
Tone-burst Response	18	Complies	9	
Peak C sound level	19	Complies	10	
Overload indication	20	Complies	11	

The instrument was within the above specification as received - no modifications were made

The sound level meter submitted for testing has successfully completed the periodic tests of IEC 61672-3: 2013 for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2: 2013, to demonstrate that the model of sound level meter fully conformed to the Class 1 specifications in IEC 61672-1: 2013, the sound level meter submitted for testing conforms to the Class 1 specifications of IEC 61672-1: 2013

Additional tests performed

Microphone full frequency response Filter calibration, third octave or octave Reference 36990 36988F

See additional certificate See additional certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Certificate of Calibration

Issued to Fehily Timoney & Company

J5 Plaza

North Park Business Park

North Road Dublin 11

Certificate Number 242697

Item Calibrated Svantek SVAN 977 Sound Level Meter with ACO 7052E Microphone

Serial Number 69552 (SLM) and 69543 (Microphone)

ID Number Order Number 7629 **Date Received**

10 Jun 2024 **NML Procedure Number** TFAP-NM-16

Method The above sound level meter was allowed to stabilise for a suitable

period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), Periodic tests, specification for the verification of sound level meters. This standard specifies a procedure for the periodic verification of 5001677 at (2002) sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards

Norsonic 1504A Calibration System incorporating: SR DS360 Signal Generator, No. 0735 [Cal Due Date: 01 Sep 2024] Agilent 34401A Digital Multimeter, No. 0735 [Cal Due Date: 01 Sep 2024] B&K 4180 Measuring Microphone, No. 1069 [Cal Due Date: 15 Sep 2025] B&K 4228 Pistonphone, No. 0741 [Cal Due Date: 14 Sep 2025]

B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 04 Jan 2025]

Calibrated by

David Fleming

Approved by

Date of Calibration

03 Jul 2024

Date of Issue

03 Jul 2024

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures. Under the MRA, all participating institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

Certificate of Calibration

Issued to Fehily Timoney & Company

J5 Plaza

North Park Business Park

North Road Dublin 11

Certificate Number 242698

Item Calibrated Svantek SVAN 977 Sound Level Meter with ACO 7052E Microphone

Serial Number 69556 (SLM) and 69608 (Microphone)

ID Number None Order Number 7629 Date Received 10 Jun 2024 NML Procedure Number TFAP-NM-16

Method The above sound level meter was allowed to stabilise for a suitable

period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), Periodic tests, specification for the verification of sound level meters. This standard specifies a procedure for the periodic verification of conformance of a sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards

Norsonic 1504A Calibration System incorporating: SR DS360 Signal Generator, No. 0735 [Cal Due Date: 01 Sep 2024] Agilent 34401A Digital Multimeter, No. 0736 [Cal Due Date: 01 Sep 2024] B&K 4180 Measuring Microphone, No. 1069 [Cal Due Date: 15 Sep 2025] B&K 4228 Pistonphone, No. 0741 [Cal Due Date: 14 Sep 2025]

B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 04 Jan 2025]

Calibrated by

David Fleming

Approved by

Date of Calibration

03 Jul 2024

Date of Issue

03 Jul 2024

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures. Under the MRA, all participating Institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

Certificate of Calibration

Issued to Fehily Timoney & Company

J5 Plaza

North Business Park

North Road Dublin 11

Attention of Maureen Marsden

Certificate Number 220035

Item Calibrated Svantek SVAN 977 Sound Level Meter with ACO 7052E Microphone

Serial Number 34876 (SLM) and 56429 (Microphone)

ID NumberNoneOrder Number7018Date Received06 Jan 2022NML Procedure NumberAP-NM-09

Method The above sound level meter was allowed to stabilise for a suitable

period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), *Periodic tests, specification for the verification of sound level meters.* This standard specifies a procedure for the periodic verification of conformance of a sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards Norsonic 1504A Calibration System incorporating:

SR DS360 Signal Generator, No. 0735 [Cal Due Date: 10 Jun 2022]
Agilent 34401A Digital Multimeter, No. 0736 [Cal Due Date: 10 Jun 2022]
B&K 4134 Measuring Microphone, No. 0744 [Cal Due Date: 03 Jun 2023]
B&K 4228 Pistonphone, No. 0740 [Cal Due Date: 04 Jun 2023]

B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 07 Oct 2022]

Calibrated by

David Fleming

Approved by

Paul Hetherington

Date of Calibration

18 Jan 2022

Date of Issue

18 Jan 2022

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures. Under the MRA, all participating institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

Certificate of Calibration

Issued to Fehily Timoney & Company

J5 Pláza

North Business Park

North Road Dublin 11

Attention of Maureen Marsden

Certificate Number 220036

Item Calibrated Svantek SVAN 979 Sound Level Meter with GRAS 40AE Microphone

Serial Number 14775 (SLM) and 106027 (Microphone)

ID Number None Order Number 7018

Date Received 06 Jan 2022 AP-NM-09 NML Procedure Number

Method The above sound level meter was allowed to stabilise for a suitable

period in laboratory conditions. It was then calibrated by carrying out the verification tests detailed in IEC 61672-3 (2006), Periodic tests, specification for the verification of sound level meters. This standard specifies a procedure for the periodic verification of conformance of a sound level meter or integrating-averaging meter to IEC 61672-1 (2003).

Calibration Standards Norsonic 1504A Calibration System incorporating:

SR DS360 Signal Generator, No. 0735 [Cal Due Date: 10 Jun 2022]

Agilent 34401A Digital Multimeter, No. 0736 [Cal Due Date: 10 Jun 2022] B&K 4134 Measuring Microphone, No. 0744 [Cal Due Date: 03 Jun 2023] B&K 4228 Pistonphone, No. 0740 [Cal Due Date: 04 Jun 2023]

B&K 4226 Acoustical Calibrator, No. 0150 [Cal Due Date: 07 Oct 2022]

Calibrated by

David Fleming

Approved by

Paul Hetherington

Date of Calibration

12 Jan 2022

Date of Issue

13 Jan 2022

This certificate is consistent with Calibration and Measurement Capabilities (CMC's) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures. Under the MRA, all participating institutes recognize the validity of each other's calibration certificates and measurement reports for quantities, ranges and measurement uncertainties specified in Appendix C (for details see www.bipm.org)

ISO9001 certified

FACTORY CALIBRATION DATA OF THE SV 307 No. 104985

with microphone SVANTEK type ST30A No. 108881 IMEI: 355001092063493

1. CALIBRATION (acoustical)

LEVEL METER function: Reference frequency: 1000Hz: Sound Pressure Level: 114.03 dB.

Characteristic	Carreet value [dB]	Indication [dB]	Error [dB]		
2	114.03	114.09	0.06		
A	114.03	114.69	0.06		
C	114.03	114.09	0.06		

Calibration measured with the microphone SVANTEK type \$T30A No. 108881. Calibration factor: 0.00 dB.

2. LINEARITY TEST (electrical)

LEVEL METER function; Characteristic: A; f_{sin} = 31.5 Hz

Nominal result LEQ [dB]	29.0	30.0	31.0	35:0	40.0	60.0	80.0	85.0
Ecror [dB]	0.0	0.0		0.0			0.0	0.0

LEVEL METER function; Characteristic: A: f_{sin}= 1000 Hz

Nominal result LEQ [dB]	29.0	30.0	31.0	35,0	40.0	60.0	80.0	100.0	120.0	125.0
Errur [dfi]	-1.0	0.0	0.0	35.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0

LEVEL METER function; Characteristic: A; f sun= 8000 Hz

Nominal result LEQ [dB]	29.0	30.0	31.0	35.0	40.0	60,0	80.0	100,0	1200	124.0
Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0

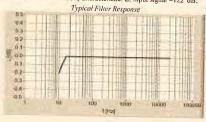
3. TONE BURST RESPONSE

LEVEL METER function; Characteristic: A; f sin= 4000 Hz; Burst duration; 2s

Steady level nominal result = 122 dB

Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	7	-1-	0.5	0.25
Fasi	Indication [dB]	122.0	121 /	121.0	119.4	117.2	1117	110.8	103.9	1010	1000	117.00	94.9	
MAX	Fasi	Error [dB]	-0.0	0.0	0.0	0.0	-60	-0.0	40,61	17.11	-0.0	-0.0	-0.1	-0.1
Market.	Time.	Indication [dB]	119.0	112.6	114.5	111.7	108.8	1018	101.9	96.6	94.0			-0.1
		Error [dB]	-0.1	-0.0	-0.1	-01	49.1	-0.1	-0.1	-0.1	-0.0		100	-
SEL		Indication [dB]	122.0	119.0	115.0	112.0	109/0	itid.0	http:	99.6	96.0	46.4	888 0	85.8
2016	-	Error [dB]	0.0	-0.0	0.0	0.0	40.0	nn -	.00	-000	45.00	-0.1	- 61	-0.1

Steady level nominal result = 62 dB


Result	Detector	Duration [ms]	11100	500	200	100	50.	20	10	- 5	2
	These.	Indication [dB]	62.0	61.9	61.0	-59.4	57.2	33.7	511.8	47.6	4470
MAX	Fast	Error [dB]	11.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	na-	40.0
39:55	Stow	Indication [dB]	-39.9	57.9	343	-31.7	48.8	44.0	41.9	18.8	343
	SHOW	Error [dB]	1.0-	-0.0	0.1	-0.1	-0.1	-0.1	-0.1	46.1	dit
SEL	-5	Indication [dB]	620	59.0	350	52.0	49.0	45.0	-42.0	2011	35.0
and.		Error [dB]	000	-0.0	10.0	0.0	410	0.11	-610	10.0	- 61.16

Steady level nominal result = 40 dB

Result	Detector	Duration [ms]	1000	500	200
	Fasi	Indication [dB]	40.0	19.0	39.0
MAY.	F305)	Erroe [dB]	0.0	0.0	- 0.0
MAX St.	91	Indication [dB]	17.9	35.9	-326
	AX Slem	Error [dB]	-0.1	00.01	0.0
SEL		Indication [dB]	40.0	17.0	11
unt		Error [dB]	0.0	ne	:0.1

4. FREQUENCY RESPONSE (electrical)

LEVEL METER function; Characteristic; Z; lnput signal =122 dB;

			itter Resp cy. L-levi		
te	LidB)	CHHAL	1. [dB]	FIRM	L [dB]
0	1.0-	63	-0.0	4000	-0.0
3	-0.0	125	-0.0	.8000	-0.0
6	0.0	250	-0.0	16000	-0.0

All frequencies are nominal center values for the 1/3 octave bands

5. FREQUENCY RESPONSE (acoustical)

LEVEL METER function: Characteristic: Z; Input: 90 dB;

Frequency [Hz]	20	31.5	63	125	250	500	1000	1000	- 2000
Pressure Response [dB]	0.8	9.6	63	0.2	- 0.2	0.2	40.1	0.0	2000
Free Field Response [dB]	0.9	0.6	0.7	0.1	0.2	0.2	- 0.1	900	111/27

Frequency [Ho]	3150	4000	5000	6380	8000	10000	12500	16000
Pressure Response [dB]	-14	21	-3.0	-4.3	-5.8.	.77	-0.1	1114
Free Field Response [dB]	-111	0.4	0.2	0.0	-0.1	.0.1	17	-111

6. INTERNAL NOISE LEVEL (electrical - compensated)

LEVEL METER function; Calibration factor: 0dB

Characteristic	Z	- A	C
Level [dB]	823	<18	C18

7. INTERNAL NOISE LEVEL (acoustical - compensated)

LEVEL METER function; Characteristic: A;

Indication	[dB]		<21	٦

Noise measured in special chamber, with reference microphone G.R.A.S type 40AN No. 73421

ENVIRONMENTAL CONDITIONS

Tourse	T plus is in	
Temperature	Relative humidity	Ambient pressure
31.4	36%	989 hP4

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
L	SVANTEK	SVAN-401	100	Signal generator
2:	SVANTEK	SVAN 912A	4369	Sound & Vibration Analyser
J	RIGOL	DM3068	DM30155100773	Digital multimeter
4	SVANTEK	SV338	93171	Acoustic calibrator
5.	G.R.A.S.	51AB	200368	Sound Intensity Calibrator
n.	G.R.A.S.	40BP	93296	V. Pressure Microphone
7	GRAS	40AN	73421	½" Free Field Microphone
8.	SVANTEK	5L307		Microphone equivalent electrical impedance (18pF)

- CONFORMITY & TEST DECLARATION

 1. Herewith Symilar company declares that this instrument has been collibrated and tested in compinance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.

 2. The acoustic calibration was performed using the Sound Calibrator and is traceable to the GUM (Central Office of Measures) reference standard sound level calibrator type 423 I No 2292773.

 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.

 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Cezary Dardziński

- AL -

Test date: 2021-05-05

ISO9001 certified

FACTORY CALIBRATION DATA OF THE SV 307 No. 104990

with microphone SVANTEK type ST30A No. 108889

IMEI: 355001097776701

1. CALIBRATION (acoustical)

LEVEL METER function; Reference frequency; 4000Hz; Sound Pressure Level; 114.03 dB.

Characteristic	Correct value IdB3	Indication [dB]	Erme [dB]
Z	114.03	114.07	0.04
A	114.03	114.07	0.04
C	114,03	114.07	0.04

Calibration measured with the microphone SVANTEK type ST30A No. 108889. Calibration factor: 0.00 dB.

2. LINEARITY TEST (electrical)

LEVEL METER function; Characteristic: A; f sin= 31.5 Hz

Nominal result LEQ [dB]	29.0	30.0	31.0	35.0	40,0	60.0	80.0	85.0
Error [dB]	0.0	0.0	0.0	-0.0	0.0	.0,0	0.0	-0.0

LEVEL METER function: Characteristic: A: f_{su}= 1000 Hz

Nominal result LEQ [dB]	2970	30.0	21.0	35.0	40.0	60.11	300,0	100.0	120.0	125.0
Error [dB]	0.1	0.1	0.1	.0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0

LEVEL METER function; Characteristic: A; f sa= 8000 Hz.

Nominal result LEQ [dB]	29.0	30.0	31.0	35.0	40.0	60.11	30.0	100.0	120.0	124.0
Error [dii]	0.0	0,0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	124.0

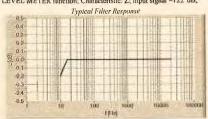
3. TONE BURST RESPONSE

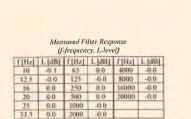
LEVEL METER function; Characteristic: A; f an = 4000 Hz; Burst duration: 2s

Steady level resumal result = 122 dB

Result	Detector	Duration [ms]	1000	300	200	100	30	20	10	3	2	1	0.5	0.25
Fati	Bleet	Indication [dii]	122.0	121.9	121.0	119.4	112.2	1117	110.8	107.9	104.0	101.0	97.9	31,9
MAX	yan	Error [dB]	:0.0	0.0	0.0	0.0	:0.0	0.0	40.0	0.0	-0.0	48.0	-0.1	-0.1
Slow	Class	Indication [dB]	119.9	117.9	114.5	111.2	norx	1948	100.5	113.77	94.9		15-	1
	oluw.	Error [dB]	.000	40.0	40.5	41.1	41.1	-0.1	:0.1	0.1	-0.1	5.4	1-1	-
SEL	Indic	Indication [dB]	12318	319.0	1150	113.0	409.0	105.0	102.0	99.0	95.0	91.9	38.9	85.1
	Error [dB]	0.0	-0.0	0.0	0.0	×0,0	(0.0)	0.0	-0.0	-0.0	-0.0	41.1	40.1	

Stendy level nominal result = 62 dB


Result	Detector	Duration [ms]	1000	300	200	100	50	20	10	5.	2	
Fast	Indication [dB]	12.0	61.8	-01.0	39.4	57.2	55.7	(-50.9)	47.9	48.0		
MAX		Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	1000	-0.0	
Slow	Plan	Indication [dB]	59.0	-129	84.6	31.7	48.8	44.9	41.8	78.9	-34.9	
	310W	Ervor [dB]	-0.1	0.0	46.1	-011	-0.1	40.4	-0.1	40.1	-0.1	
SEL	Leenin		Indication [dill]	52-0	39.0	55.0	524	49.0	45.0	42.0	39.0	35.0
		Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	0.0	0.0	


Steady level nominal result = 40 dB

Result	Detector Duration [ms]		1000	500	200
	B. 10	Indication [dit]	40.0	39.9	39,0
MAX	Fast	Eccor (dB)	0.0	0.0	0.3
MAN.	Slow	Indication [dB]	36.0	355	33.5
	21011	Ecror dil	-0.0	0.0	-0.1
SEL		Indication [dB]	40.0	37.0	38.1
attle		Error [dB]	9.0	0.0	0.1

4. FREQUENCY RESPONSE (electrical)

LEVEL METER function; Characteristic: Z; Input signal =122 dB;

5. FREQUENCY RESPONSE (acoustical)

LEVEL METER function: Characteristic: Z: Input: 90 dB:

Frequency [Hz]	20	31.5	63	125	2,50	500	800	1000	2000
Pressure Response [dB]	0.9	0.7	0.4	0.2	0.2	0.2	0.1	0.0	0.5
Free Field Response [dB]	0.9	-0.7	0.4	0.2	0.2	0.2	1.0	0.0	n.n.

Frequency [Hz]	3150	4000	5000	6300	8000	10000	12500	16000
Pressure Response [dl3]	1.4	-2.1	-3.0	-4.3	-5.7	-7.1	-8.1	-0.0
Free Field Resnauce (dB)	-0.9	0.4	0.2	0.1	-0.0	-0.4	-14	3.5

6. INTERNAL NOISE LEVEL (electrical - compensated)

LEVEL METER function; Calibration factor; 0dB

Characteristic	Z	Α.	C
Level [dB]	523	≤15	513

7. INTERNAL NOISE LEVEL (acoustical - compensated)

LEVEL METER function; Characteristic: A;

Indication [dB]

Noise measured in special chamber, with reference microphone G.R.A.S type 40AN No. 73421

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
22°C	40%	989 hPa

TEST EQUIPMENT

Hem	Manufacturer	Model	Serial no.	Description
1	SVANTEK	SVAN 401	100	Signal generator
2	SVANTEK	5VAN 912A	4369	Sound & Vibration Analyser
3	RIGOL	DM:3068	DM30155100773	Digital multimeter
4.	SVANTEK	SV33B	93171	Acoustic calibrator
5	GRAS	51AB	200368	Sound Intensity Calibrator
6.	GRAS	40BP	93296	%" Pressure Microphone
7.	GRAS.	40AN	73421	%" Free Field Microphone
X.	SVANTEK	SL307	-	Microphone equivalent electrical impedance (18pF)

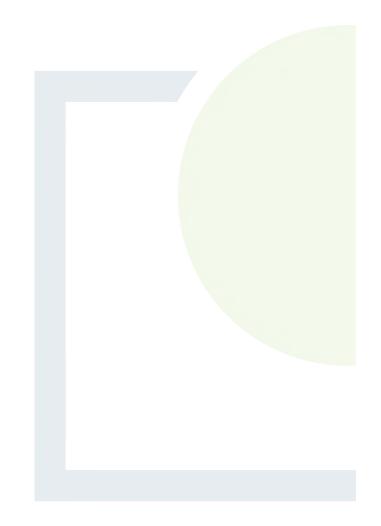
CONFORMITY & TEST DECLARATION

- 1. Herewith Svantck company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.

 2. The acoustic calibration was performed using the Sound Calibrator and is traceable to the GUM (Central Office of Measures) reference standard—sound level calibrator type 4231 No 2292773.
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.

 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Cezary Dardziński


1000

Test date: 2021-05-05

APPENDIX 8.3

Noise Sensitive Location Details

Receptor ID	Description	Easting	Northing
1	Residential	532659	753587
2	Residential	532173	755960
66	Residential	532929	753509
144	Residential	530451	753792
152	Residential	530590	752953
155	Residential	533979	752744
181	Residential	532272	752403
183	Residential	532074	753726
184	Residential	533012	754921
185	Residential	532873	754946
186	Residential	532797	754957
187	Residential	532753	753672
188	Residential	532715	755022
189	Residential	532630	755193
190	Residential	532630	755107
191	Residential	532614	755018
192	Residential	532563	755014
193	Residential	532829	753524
194	Residential	532536	755297
195	Residential	532849	753491
196	Residential	532061	755041
197	Residential	532165	755049
198	Residential	534218	753767
199	Residential	534292	753778
200	Residential	532906	753403
201	Residential	534190	753712
202	Residential	532377	755688
203	Residential	534017	753643
204	Residential	533962	753609
205	Residential	534061	753634
206	Residential	532203	755286
207	Residential	532347	755746
208	Residential	532272	755414
209	Residential	532236	755371
210	Residential	533542	756521
211	Residential	532990	753322
212	Residential	533486	756556
213	Residential	533041	753283
214	Residential	533881	753487
215	Residential	535653	754940
216	Residential	532232	755851
217	Residential	532194	752678
218	Residential	533239	756682
219	Residential	533984	753386
217 218	Residential Residential	532194 533239	752678 756682

Receptor ID	Description	Easting	Northing
220	Residential	532214	752653
221	Residential	530810	755047
222	Residential	530833	753340
223	Residential	533075	753095
224	Residential	533012	753052
225	Residential	533326	756739
226	Residential	534979	756036
227	Residential	532165	756019
228	Residential	530520	753983
229	Residential	532128	755995
230	Residential	530733	753390
231	Residential	533106	756763
232	Residential	532965	756743
233	Residential	530631	753549
234	Residential	530568	753706
235	Residential	532099	756013
236	Residential	532078	755989
237	Residential	530632	753498
238	Residential	530676	753404
239	Residential	535027	756099
240	Residential	533059	752937
241	Residential	530453	753944
242	Residential	532939	756808
243	Residential	535114	756114
244	Residential	535161	756089
245	Residential	532877	756809
246	Residential	530461	753762
247	Residential	530676	755149
248	Residential	532868	756839
249	Residential	532160	756349
250	Residential	533067	752798
251	Residential	532922	756866
252	Residential	530364	753933
253	Residential	535950	755114
254	Residential	531809	756061
255	Residential	532162	756487
256	Residential	530575	755177
257	Residential	532494	756770
258	Residential	532426	756735
259	Residential	530587	755216
260	Residential	532642	756871
261	Residential	532166	756530
262	Residential	534029	752974
263	Residential	535987	755165

Receptor ID	Description	Easting	Northing
264	Residential	531728	756078
265	Residential	532583	756872
266	Residential	532607	756899
267	Residential	533895	752877
268	Residential	534001	752908
269	Residential	531603	756028
270	Residential	533105	752585
271	Residential	534074	752911
272	Residential	530589	753018
273	Residential	532636	756945
274	Residential	532648	756966
275	Residential	530535	753057
276	Residential	534019	752844
277	Residential	530533	753029
278	Residential	532885	757080
279	Residential	530398	755166
280	Residential	530528	753004
281	Residential	530533	752974
282	Residential	533102	752459
283	Residential	530528	752936
284	Residential	532775	757105
285	Residential	530559	752861
286	Residential	534613	756834
287	Residential	533195	752422
288	Residential	530514	752870

APPENDIX 8.4

Sound Power Level Data For Wind Turbines



Table 8.4.1: Wind Turbine (Nordex N149 5.7MW) - Sound Power Data standardised to 10m height, based on 105m hub height (with trailing edge serrations)

	Standardised 10 m Height Wind Speed (m/s)								
Turbine	3	4	5	6	7	8 to cut out			
Nordex N149 5.7MW									
(105m Hub height)*	94.0	95.2	99.8	104.2	105.6	105.6			

^{*}The sound power at 105m was calculated as per the guidance in IOA supplementary guidance note 3: Sound Power Level Data, Section 5.

Table 8.4.2: Wind Turbine ((Nordex N149 5.7MW) – Typical 1/1 octave band spectrum for 63 Hz to 8 kHz, standardised to 10m height wind speeds based on 105m hub height (with trailing edge serrations),

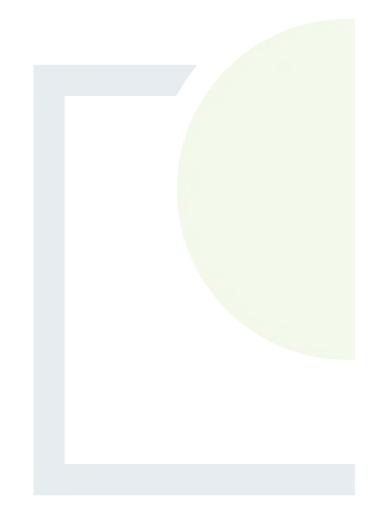
1/1 oct. band, center freq.	63	125	250	500	1000	2000	4000	8000
3	77.1	83.7	86.6	87.6	88.0	86.2	80.5	71.3
4	78.3	84.9	87.8	88.8	89.2	87.4	81.7	72.5
5	81.1	87.7	91.4	93.5	94.8	92.9	83.3	75.4
6	85.5	92.1	95.8	97.9	99.2	97.3	87.7	79.8
7	86.9	93.5	97.2	99.3	100.6	98.7	89.1	81.2
8	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4
9	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4
10	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4
11	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4
12	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4

Table 8.4.3: Wind Turbine (Siemens Gamesa SG 6.6-155) - Sound Power Data standardised to 10m height, based on 105m hub height (with trailing edge serrations)

Turking		Sta	andardised 10 m He	ight Wind Speed (m	/s)
Turbine	4	5	6	7	8 to Cut Out
SG 6.6-155	98.8	102.7	105.0	105.0	105.0

^{*}The sound power at 105m was calculated as per the guidance in IOA supplementary guidance note 3: Sound Power Level Data, Section 5.

Table 8.4.4: Wind Turbine (Siemens Gamesa SG155) – Typical 1/1 octave band spectrum for 63 Hz to 8 kHz, standardised to 10m height wind speeds based on 105m hub height (with trailing edge serrations),


1/1 oct. band, center freq.	63	125	250	500	1000	2000	4000	8000
4	78.4	85.8	90.4	92.7	92.5	92.8	86.2	71.2
5	82.3	89.7	94.3	96.6	96.4	96.7	90.1	75.1
6	83.9	91.4	96.9	98.6	99.3	98.6	92.6	77.1
7	83.9	91.2	97.0	98.4	99.6	98.5	92.7	76.8
8	86.1	92.3	97.3	97.6	99.3	98.9	93.0	76.1

DESIGNING AND DELIVERING A SUSTAINABLE FUTURE

APPENDIX 8.5

Predicted Noise Levels From Proposed Shancloon Wind Farm at Nearby Sensitive Locations

Results for Vestas N149

Table 8.5.1 presents the predicted noise levels (L_{A90}) from wind turbines for the proposed Shancloon Wind Farm at noise sensitive locations for Standardised 10m height wind speeds of 3 m/s to 14 m/s. The numbering is not sequential as only the noise sensitive locations within the 35 dB L_{A90} noise contour are presented. Commercial receptors, derelict and uninhabited dwellings were not considered.

Table 8.5.1: Predicted noise levels (L_{A90}) from Shancloon Wind Farm at Noise Sensitive Locations for Standardised 10m Wind Speeds of 3 m/s to 8 m/s Nordex N149/5.7 turbine, unmitigated

	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	3	4	5	6	7	8 and above			
1	29.9	31.1	35.5	39.8	41.3	41.4			
2	25.9	27.1	31.4	35.9	37.2	37.4			
66	28.7	29.9	34.3	38.6	40.1	40.2			
144	24.6	25.8	30.1	34.7	35.9	36.1			
152	22.9	24.1	28.3	33	34.1	34.3			
155	22.5	23.7	27.8	32.6	33.6	33.8			
181	24	25.2	29.5	34.1	35.3	35.4			
183	35.4	36.6	41.2	45.1	47	47.1			
184	31	32.2	36.7	41	42.5	42.6			
185	30.3	31.5	36	40.3	41.8	41.9			
186	30	31.2	35.6	39.9	41.4	41.5			
187	29.9	31.1	35.6	39.8	41.4	41.5			
188	29.7	30.9	35.3	39.6	41.1	41.2			
189	29.4	30.6	35	39.3	40.8	40.9			
190	29.3	30.5	34.9	39.3	40.7	40.8			
191	29.3	30.5	34.8	39.2	40.6	40.8			
192	29.1	30.3	34.7	39.1	40.5	40.6			
193	28.9	30.1	34.5	38.9	40.3	40.5			
194	28.9	30.1	34.5	38.9	40.3	40.5			
195	28.7	29.9	34.3	38.6	40.1	40.2			
196	28.5	29.7	34	38.4	39.8	40			
197	28.4	29.6	34	38.4	39.8	39.9			
198	28.3	29.5	33.9	38.2	39.7	39.8			
199	28.2	29.4	33.8	38.2	39.6	39.8			
200	28.1	29.3	33.6	38	39.4	39.6			
201	27.9	29.1	33.5	37.9	39.3	39.4			

December ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	3	4	5	6	7	8 and above			
202	27.9	29.1	33.5	37.9	39.3	39.4			
203	27.8	29	33.3	37.7	39.1	39.3			
204	27.6	28.8	33.2	37.6	39	39.1			
205	27.6	28.8	33.2	37.6	39	39.1			
206	27.6	28.8	33.1	37.6	38.9	39.1			
207	27.6	28.8	33.2	37.6	39	39.1			
208	27.6	28.8	33.1	37.6	38.9	39.1			
209	27.5	28.7	33	37.5	38.8	39			
210	27.5	28.7	33.1	37.4	38.9	39			
211	27.4	28.6	33	37.4	38.8	38.9			
212	27.3	28.5	32.9	37.2	38.7	38.8			
213	27.1	28.3	32.6	37.1	38.4	38.6			
214	27	28.2	32.5	36.9	38.3	38.4			
215	26.6	27.8	32.2	36.6	38	38.2			
216	26.6	27.8	32.1	36.6	37.9	38			
217	26.4	27.6	32	36.4	37.8	37.9			
218	26.4	27.6	31.9	36.3	37.7	37.9			
219	26	27.2	31.5	36	37.3	37.5			
220	26.1	27.3	31.7	36.1	37.5	37.6			
221	26.1	27.3	31.6	36	37.4	37.6			
222	26	27.2	31.6	36	37.4	37.5			
223	25.9	27.1	31.4	35.9	37.2	37.4			
224	25.8	27	31.3	35.8	37.1	37.3			
225	25.8	27	31.3	35.8	37.1	37.3			
226	25.7	26.9	31.2	35.7	37	37.2			
227	25.7	26.9	31.2	35.7	37	37.1			
228	25.5	26.7	31.1	35.5	36.9	37			
229	25.5	26.7	31	35.6	36.8	37			
230	25.5	26.7	31.1	35.5	36.9	37			
231	25.5	26.7	31.1	35.5	36.9	37			
232	25.5	26.7	31	35.5	36.8	37			
233	25.3	26.5	30.9	35.4	36.7	36.8			
234	25.3	26.5	30.8	35.3	36.6	36.8			
235	25.3	26.5	30.8	35.4	36.6	36.7			
236	25.3	26.5	30.8	35.3	36.6	36.7			
237	25.2	26.4	30.7	35.2	36.5	36.7			

December 15	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	3	4	5	6	7	8 and above			
238	25.2	26.4	30.7	35.2	36.5	36.6			
239	25.1	26.3	30.6	35.2	36.4	36.6			
240	25.1	26.3	30.5	35.1	36.3	36.5			
241	24.9	26.1	30.4	35	36.2	36.4			
242	24.9	26.1	30.4	34.9	36.2	36.3			
243	24.7	25.9	30.2	34.8	36	36.2			
244	24.8	26	30.2	34.8	36	36.2			
245	24.7	25.9	30.2	34.8	36	36.2			
246	24.6	25.8	30.1	34.7	35.9	36.1			
247	24.5	25.7	30	34.6	35.8	36			
248	24.5	25.7	30	34.5	35.8	35.9			
249	24.4	25.6	29.8	34.5	35.6	35.8			
250	24.3	25.5	29.8	34.4	35.6	35.7			
251	24.4	25.6	29.9	34.5	35.7	35.8			
252	24.2	25.4	29.7	34.3	35.5	35.7			
253	23.9	25.1	29.3	33.9	35.1	35.3			
254	23.9	25.1	29.3	34	35.1	35.2			
255	23.8	25	29.2	33.9	35	35.2			
256	23.8	25	29.2	33.8	35	35.2			
257	23.8	25	29.2	33.8	35	35.2			
258	23.7	24.9	29.1	33.8	34.9	35.1			
259	23.7	24.9	29.1	33.7	34.9	35.1			
260	23.6	24.8	29.1	33.7	34.9	35			
261	23.6	24.8	29	33.7	34.8	35			
262	23.5	24.7	28.9	33.6	34.7	34.9			
263	23.5	24.7	29	33.6	34.8	35			
264	23.5	24.7	28.9	33.6	34.7	34.9			
265	23.4	24.6	28.9	33.5	34.7	34.8			
266	23.3	24.5	28.8	33.4	34.6	34.7			
267	23.3	24.5	28.6	33.4	34.4	34.6			
268	23.2	24.4	28.6	33.3	34.4	34.6			
269	23.3	24.5	28.6	33.4	34.4	34.6			
270	23.2	24.4	28.6	33.3	34.4	34.5			
271	23.1	24.3	28.5	33.2	34.3	34.5			
272	23.2	24.4	28.6	33.2	34.4	34.6			
273	23.1	24.3	28.5	33.2	34.3	34.5			

Receptor ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)									
	3	4	5	6	7	8 and above				
274	23	24.2	28.4	33.1	34.2	34.4				
275	23	24.2	28.4	33.1	34.2	34.4				
276	22.9	24.1	28.2	33	34	34.2				
277	22.9	24.1	28.3	33	34.1	34.3				
278	22.8	24	28.2	32.9	34	34.2				
279	22.8	24	28.2	32.9	34	34.2				
280	22.8	24	28.2	32.9	34	34.1				
281	22.7	23.9	28.1	32.8	33.9	34.1				
282	22.6	23.8	27.9	32.7	33.7	33.9				
283	22.5	23.7	27.9	32.6	33.7	33.9				
284	22.5	23.7	27.8	32.6	33.6	33.8				
285	22.4	23.6	27.8	32.5	33.6	33.7				
286	22.3	23.5	27.7	32.5	33.5	33.6				
287	22.3	23.5	27.6	32.4	33.4	33.6				
288	22.2	23.4	27.6	32.3	33.4	33.5				

Table 8.5.1: Predicted noise levels (L_{A90}) from Shancloon Wind Farm at Noise Sensitive Locations for Standardised 10m Wind Speeds of 3 m/s to 8 m/s Nordex 149/5.7 turbine, with mitigation at 6m/s

Receptor ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
	3	4	5	6	7	8 and above			
1	29.9	31.1	35.5	39.1	41.3	41.4			
2	25.9	27.1	31.4	35.2	37.2	37.4			
66	28.7	29.9	34.3	37.4	40.1	40.2			
144	24.6	25.8	30.1	34.5	35.9	36.1			
152	22.9	24.1	28.3	32.8	34.1	34.3			
155	22.5	23.7	27.8	31.6	33.6	33.8			
181	24	25.2	29.5	33.7	35.3	35.4			
183	35.4	36.6	41.2	45	47	47.1			
184	31	32.2	36.7	39.4	42.5	42.6			
185	30.3	31.5	36	38.8	41.8	41.9			
186	30	31.2	35.6	38.6	41.4	41.5			
187	29.9	31.1	35.6	38.9	41.4	41.5			

D	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	3	4	5	6	7	8 and above			
188	29.7	30.9	35.3	38.4	41.1	41.2			
189	29.4	30.6	35	38.2	40.8	40.9			
190	29.3	30.5	34.9	38.2	40.7	40.8			
191	29.3	30.5	34.8	38.1	40.6	40.8			
192	29.1	30.3	34.7	38	40.5	40.6			
193	28.9	30.1	34.5	37.9	40.3	40.5			
194	28.9	30.1	34.5	37.9	40.3	40.5			
195	28.7	29.9	34.3	37.6	40.1	40.2			
196	28.5	29.7	34	37.9	39.8	40			
197	28.4	29.6	34	37.8	39.8	39.9			
198	28.3	29.5	33.9	37.4	39.7	39.8			
199	28.2	29.4	33.8	37.4	39.6	39.8			
200	28.1	29.3	33.6	37	39.4	39.6			
201	27.9	29.1	33.5	37	39.3	39.4			
202	27.9	29.1	33.5	37.1	39.3	39.4			
203	27.8	29	33.3	36.6	39.1	39.3			
204	27.6	28.8	33.2	36.4	39	39.1			
205	27.6	28.8	33.2	36.5	39	39.1			
206	27.6	28.8	33.1	36.9	38.9	39.1			
207	27.6	28.8	33.2	36.8	39	39.1			
208	27.6	28.8	33.1	36.8	38.9	39.1			
209	27.5	28.7	33	36.7	38.8	39			
210	27.5	28.7	33.1	36.5	38.9	39			
211	27.4	28.6	33	36.3	38.8	38.9			
212	27.3	28.5	32.9	36.3	38.7	38.8			
213	27.1	28.3	32.6	36	38.4	38.6			
214	27	28.2	32.5	35.7	38.3	38.4			
215	26.6	27.8	32.2	36.3	38	38.2			
216	26.6	27.8	32.1	35.8	37.9	38			
217	26.4	27.6	32	36.1	37.8	37.9			
218	26.4	27.6	31.9	35.5	37.7	37.9			
219	26	27.2	31.5	34.9	37.3	37.5			
220	26.1	27.3	31.7	35.8	37.5	37.6			
221	26.1	27.3	31.6	35.9	37.4	37.6			
222	26	27.2	31.6	35.9	37.4	37.5			
223	25.9	27.1	31.4	35	37.2	37.4			

December ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)									
Receptor ID	3	4	5	6	7	8 and above				
224	25.8	27	31.3	35	37.1	37.3				
225	25.8	27	31.3	34.9	37.1	37.3				
226	25.7	26.9	31.2	35	37	37.2				
227	25.7	26.9	31.2	34.9	37	37.1				
228	25.5	26.7	31.1	35.4	36.9	37				
229	25.5	26.7	31	34.8	36.8	37				
230	25.5	26.7	31.1	35.4	36.9	37				
231	25.5	26.7	31.1	34.7	36.9	37				
232	25.5	26.7	31	34.7	36.8	37				
233	25.3	26.5	30.9	35.2	36.7	36.8				
234	25.3	26.5	30.8	35.2	36.6	36.8				
235	25.3	26.5	30.8	34.6	36.6	36.7				
236	25.3	26.5	30.8	34.6	36.6	36.7				
237	25.2	26.4	30.7	35.1	36.5	36.7				
238	25.2	26.4	30.7	35	36.5	36.6				
239	25.1	26.3	30.6	34.5	36.4	36.6				
240	25.1	26.3	30.5	34.3	36.3	36.5				
241	24.9	26.1	30.4	34.8	36.2	36.4				
242	24.9	26.1	30.4	34.1	36.2	36.3				
243	24.7	25.9	30.2	34.1	36	36.2				
244	24.8	26	30.2	34.1	36	36.2				
245	24.7	25.9	30.2	33.9	36	36.2				
246	24.6	25.8	30.1	34.5	35.9	36.1				
247	24.5	25.7	30	34.3	35.8	36				
248	24.5	25.7	30	33.7	35.8	35.9				
249	24.4	25.6	29.8	33.7	35.6	35.8				
250	24.3	25.5	29.8	33.6	35.6	35.7				
251	24.4	25.6	29.9	33.6	35.7	35.8				
252	24.2	25.4	29.7	34.1	35.5	35.7				
253	23.9	25.1	29.3	33.5	35.1	35.3				
254	23.9	25.1	29.3	33.3	35.1	35.2				
255	23.8	25	29.2	33.1	35	35.2				
256	23.8	25	29.2	33.6	35	35.2				
257	23.8	25	29.2	33	35	35.2				
258	23.7	24.9	29.1	32.9	34.9	35.1				
259	23.7	24.9	29.1	33.5	34.9	35.1				

D	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)									
Receptor ID	3	4	5	6	7	8 and above				
260	23.6	24.8	29.1	32.9	34.9	35				
261	23.6	24.8	29	32.9	34.8	35				
262	23.5	24.7	28.9	32.6	34.7	34.9				
263	23.5	24.7	29	33.2	34.8	35				
264	23.5	24.7	28.9	32.9	34.7	34.9				
265	23.4	24.6	28.9	32.7	34.7	34.8				
266	23.3	24.5	28.8	32.6	34.6	34.7				
267	23.3	24.5	28.6	32.3	34.4	34.6				
268	23.2	24.4	28.6	32.3	34.4	34.6				
269	23.3	24.5	28.6	32.8	34.4	34.6				
270	23.2	24.4	28.6	32.5	34.4	34.5				
271	23.1	24.3	28.5	32.2	34.3	34.5				
272	23.2	24.4	28.6	33	34.4	34.6				
273	23.1	24.3	28.5	32.4	34.3	34.5				
274	23	24.2	28.4	32.3	34.2	34.4				
275	23	24.2	28.4	32.9	34.2	34.4				
276	22.9	24.1	28.2	32	34	34.2				
277	22.9	24.1	28.3	32.8	34.1	34.3				
278	22.8	24	28.2	32	34	34.2				
279	22.8	24	28.2	32.6	34	34.2				
280	22.8	24	28.2	32.7	34	34.1				
281	22.7	23.9	28.1	32.6	33.9	34.1				
282	22.6	23.8	27.9	32	33.7	33.9				
283	22.5	23.7	27.9	32.4	33.7	33.9				
284	22.5	23.7	27.8	31.7	33.6	33.8				
285	22.4	23.6	27.8	32.3	33.6	33.7				
286	22.3	23.5	27.7	31.4	33.5	33.6				
287	22.3	23.5	27.6	31.6	33.4	33.6				
288	22.2	23.4	27.6	32.1	33.4	33.5				

Table 8.5.2: Predicted noise levels (L_{A90}) from Shancloon Wind Farm at Noise Sensitive Locations for Standardised 10m Wind Speeds of 4 m/s to 8 m/s Siemens Gamesa SG155-6.6, 102.5m hub height, unmitigated

	Predicted Noise Level (dB LA90) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	4	5	6	7	8 and above				
1	34.2	38.1	40.1	40.4	40.3				
2	30	33.9	36.2	36.3	36.2				
66	32.9	36.8	38.9	39.2	39.1				
144	28.8	32.7	34.9	35	35				
152	27	30.9	33.2	33.2	33.2				
155	26.4	30.3	32.7	32.6	32.7				
181	28.1	32	34.3	34.3	34.3				
183	39.9	43.8	45.8	46.2	46.1				
184	35.4	39.3	41.3	41.6	41.5				
185	34.6	38.5	40.6	40.9	40.8				
186	34.2	38.1	40.2	40.5	40.4				
187	34.2	38.1	40.2	40.5	40.4				
188	33.9	37.8	39.9	40.1	40.1				
189	33.6	37.5	39.6	39.9	39.8				
190	33.5	37.4	39.6	39.8	39.7				
191	33.5	37.4	39.5	39.7	39.7				
192	33.3	37.2	39.3	39.6	39.5				
193	33.2	37.1	39.2	39.4	39.4				
194	33.2	37.1	39.2	39.4	39.4				
195	32.9	36.8	39	39.2	39.1				
196	32.7	36.6	38.7	38.9	38.9				
197	32.6	36.5	38.6	38.8	38.8				
198	32.5	36.4	38.6	38.8	38.7				
199	32.5	36.4	38.5	38.7	38.7				
200	32.3	36.2	38.3	38.5	38.5				
201	32.1	36	38.2	38.4	38.3				
202	32.1	36	38.2	38.4	38.3				
203	32	35.9	38	38.2	38.2				
204	31.8	35.7	37.9	38.1	38				
205	31.8	35.7	37.8	38	38				
206	31.8	35.7	37.8	38	38				
207	31.8	35.7	37.9	38	38				
208	31.7	35.6	37.8	38	37.9				

Danastos ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)								
Receptor ID	4	5	6	7	8 and above				
209	31.7	35.6	37.7	37.9	37.9				
210	31.7	35.6	37.7	38	37.9				
211	31.6	35.5	37.7	37.8	37.8				
212	31.5	35.4	37.5	37.8	37.7				
213	31.2	35.1	37.3	37.5	37.4				
214	31.1	35	37.2	37.4	37.3				
215	30.9	34.8	36.9	37.1	37.1				
216	30.7	34.6	36.8	37	36.9				
217	30.6	34.5	36.7	36.9	36.8				
218	30.6	34.5	36.6	36.8	36.8				
219	30.2	34.1	36.3	36.4	36.4				
220	30.3	34.2	36.4	36.6	36.5				
221	30.3	34.2	36.3	36.5	36.5				
222	30.2	34.1	36.3	36.5	36.4				
223	30	33.9	36.2	36.3	36.2				
224	29.9	33.8	36.1	36.2	36.1				
225	30	33.9	36.1	36.2	36.2				
226	29.9	33.8	36	36.1	36.1				
227	29.8	33.7	35.9	36	36				
228	29.7	33.6	35.8	35.9	35.9				
229	29.7	33.6	35.8	35.9	35.8				
230	29.7	33.6	35.8	35.9	35.9				
231	29.7	33.6	35.8	35.9	35.9				
232	29.7	33.6	35.7	35.9	35.8				
233	29.5	33.4	35.6	35.7	35.7				
234	29.5	33.4	35.6	35.7	35.7				
235	29.4	33.3	35.6	35.6	35.6				
236	29.4	33.3	35.5	35.6	35.6				
237	29.3	33.2	35.4	35.6	35.5				
238	29.3	33.2	35.4	35.5	35.5				
239	29.3	33.2	35.4	35.5	35.5				
240	29.2	33.1	35.3	35.4	35.4				
241	29.1	33	35.2	35.3	35.3				
242	29	32.9	35.1	35.2	35.2				
243	28.9	32.8	35	35.1	35.1				
244	28.9	32.8	35	35.1	35.1				

Receptor ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)						
	4	5	6	7	8 and above		
245	28.9	32.8	35	35.1	35.1		
246	28.8	32.7	34.9	35	35		
247	28.7	32.6	34.8	34.9	34.9		
248	28.6	32.5	34.7	34.8	34.8		
249	28.5	32.4	34.7	34.7	34.7		
250	28.4	32.3	34.6	34.6	34.6		
251	28.5	32.4	34.6	34.7	34.7		
252	28.3	32.2	34.5	34.6	34.5		
253	28	31.9	34.1	34.2	34.2		
254	27.9	31.8	34.1	34.1	34.1		
255	27.9	31.8	34.1	34.1	34.1		
256	27.9	31.8	34	34.1	34.1		
257	27.8	31.7	34	34	34		
258	27.8	31.7	33.9	34	34		
259	27.8	31.7	33.9	34	34		
260	27.7	31.6	33.9	33.9	33.9		
261	27.7	31.6	33.9	33.9	33.9		
262	27.5	31.4	33.8	33.7	33.8		
263	27.6	31.5	33.8	33.9	33.8		
264	27.5	31.4	33.8	33.7	33.7		
265	27.5	31.4	33.7	33.7	33.7		
266	27.4	31.3	33.6	33.6	33.6		
267	27.3	31.2	33.5	33.5	33.5		
268	27.2	31.1	33.5	33.4	33.5		
269	27.3	31.2	33.5	33.5	33.5		
270	27.2	31.1	33.5	33.4	33.4		
271	27.1	31	33.4	33.3	33.3		
272	27.2	31.1	33.4	33.4	33.4		
273	27.2	31.1	33.4	33.4	33.4		
274	27.1	31	33.3	33.3	33.3		
275	27.1	31	33.3	33.3	33.3		
276	26.9	30.8	33.1	33.1	33.1		
277	26.9	30.8	33.1	33.1	33.1		
278	26.8	30.7	33.1	33	33.1		
279	26.8	30.7	33.1	33	33		
280	26.8	30.7	33	33	33		

Receptor ID	Predicted Noise Level (dB L _{A90}) at Standardised 10m Height Wind Speeds (m/s)					
	4	5	6	7	8 and above	
281	26.7	30.6	32.9	32.9	32.9	
282	26.6	30.5	32.9	32.8	32.8	
283	26.6	30.5	32.8	32.7	32.8	
284	26.5	30.4	32.7	32.7	32.7	
285	26.4	30.3	32.6	32.6	32.6	
286	26.3	30.2	32.6	32.5	32.5	
287	26.2	30.1	32.5	32.4	32.4	
288	26.2	30.1	32.5	32.4	32.4	